首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.  相似文献   

2.
Bose-Einstein condensation in complex networks.   总被引:13,自引:0,他引:13  
The evolution of many complex systems, including the World Wide Web, business, and citation networks, is encoded in the dynamic web describing the interactions between the system's constituents. Despite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within the framework of equilibrium quantum gases predicts that the "first-mover-advantage," "fit-get-rich," and "winner-takes-all" phenomena observed in competitive systems are thermodynamically distinct phases of the underlying evolving networks.  相似文献   

3.
复杂网络上动力系统同步的研究进展   总被引:18,自引:0,他引:18  
本文简要介绍复杂网络的基本概念并详细总结了近年来复杂网络上动力学系统的同步的研究进展,主要内容有复杂网络同步的稳定性分析,复杂网络上动力学系统同步的特点,网络的几何特征量对同步稳定性的影响,以及提高网络同步能力的方法等。最后文章提出了这一领域的几个有待解决的问题及可能的发展方向。  相似文献   

4.
Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides "ordered" from "chaotic" attractor dynamics. We study the scaling of the average number of dynamically relevant nodes and the median number of distinct attractors in such networks. Our calculations indicate that the correct asymptotic scalings emerge only for very large systems.  相似文献   

5.
Geographical networks: geographical effects on network properties   总被引:1,自引:0,他引:1  
Complex networks describe a wide range of systems in nature and society. Since most real systems exist in certain physical space and the distance between the nodes has influence on the connections, it is helpful to study geographical complex networks and to investigate how the geographical constrains on the connections affect the network properties. In this paper, we briefly review our recent progress on geographical complex networks with respect of statistics, modelling, robustness, and synchronizability. It has been shown that the geographical constrains tend to make the network less robust and less synchronizable. Synchronization on random networks and clustered networks is also studied.   相似文献   

6.
Complex networks describe a wide range of systems in nature and society. Since most real systems exist in certain physical space and the distance between the nodes has influence on the connections, it is helpful to study geographical complex networks and to investigate how the geographical constrains on the connections affect the network properties. In this paper, we briefly review our recent progress on geographical complex networks with respect of statistics, modelling, robustness, and synchronizability. It has been shown that the geographical constrains tend to make the network less robust and less synchronizable. Synchronization on random networks and clustered networks is also studied.  相似文献   

7.
王宇娟  涂俐兰  宋帅  李宽洋 《物理学报》2018,67(5):50504-050504
针对由两个子网络构成的耦合含时滞的相互依存网络,研究其局部自适应异质同步问题.时滞同时存在于两个子网络的内部耦合项和子网络间的一对一相互依赖耦合项中,且网络的耦合关系满足非线性特性和光滑性.基于李雅普诺夫稳定性理论、线性矩阵不等式方法和自适应控制技术,通过对子网络设置合适的控制器,提出了使得相互依存网络的子网络分别同步到异质孤立系统的充分条件.针对小世界网络和无标度网络构成的相互依存网络进行数值模拟,验证了提出理论的正确性和有效性.  相似文献   

8.
Journal of Statistical Physics - Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in...  相似文献   

9.
J.C. Nacher  T. Akutsu 《Physica A》2011,390(23-24):4636-4651
Many real-world systems can be represented by bipartite networks. In a bipartite network, the nodes are divided into two disjoint sets, and the edges connect nodes that belong to different sets. Given a bipartite network (i.e. two-mode network) it is possible to construct two projected networks (i.e. one-mode networks) where each one is composed of only one set of nodes. While network analyses have focused on unipartite networks, considerably less attention has been paid to the analytical study of bipartite networks. Here, we analytically derive simple mathematical relationships that predict degree distributions of the projected networks by only knowing the structure of the original bipartite network. These analytical results are confirmed by computational simulations using artificial and real-world bipartite networks from a variety of biological and social systems. These findings offer in our view new insights into the structure of real-world bipartite networks.  相似文献   

10.
Precisely quantifying the heterogeneity or disorder of network systems is important and desired in studies of behaviors and functions of network systems. Although various degree-based entropies have been available to measure the heterogeneity of real networks, heterogeneity implicated in the structures of networks can not be precisely quantified yet. Hence, we propose a new structure entropy based on automorphism partition. Analysis of extreme cases shows that entropy based on automorphism partition can quantify the structural heterogeneity of networks more precisely than degree-based entropies. We also summarized symmetry and heterogeneity statistics of many real networks, finding that real networks are more heterogeneous in the view of automorphism partition than what have been depicted under the measurement of degree-based entropies; and that structural heterogeneity is strongly negatively correlated to symmetry of real networks.  相似文献   

11.
Recent theoretical and empirical studies have focused on the topology of large networks of communication/interactions in biological, social and technological systems. Most of them have been studied in the scope of the small-world and scale-free networks theory. Here we analyze the characteristics of ant networks of galleries produced in a 2-D experimental setup. These networks are neither small-worlds nor scale-free networks and belong to a particular class of network, i.e. embedded planar graphs emerging from a distributed growth mechanism. We compare the networks of galleries with both minimal spanning trees and greedy triangulations. We show that the networks of galleries have a path system efficiency and robustness to disconnections closer to the one observed in triangulated networks though their cost is closer to the one of a tree. These networks may have been prevented to evolve toward the classes of small-world and scale-free networks because of the strong spatial constraints under which they grow, but they may share with many real networks a similar trend to result from a balance of constraints leading them to achieve both path system efficiency and robustness at low cost.Received: 16 July 2004, Published online: 26 November 2004PACS: 89.75.Fb Structures and organization in complex systems - 89.75.Hc Networks and genealogical trees - 87.23.Ge Dynamics of social systems  相似文献   

12.
Numerous empirical studies have revealed that a large number of real networks exhibit the property of accelerating growth, i.e. network size (nodes) increases superlinearly with time. Examples include the size of social networks, the output of scientists, the population of cities, and so on. In the literature, these real systems are widely represented by complex networks for analysis, and many network models have been proposed to explain the observed properties in these systems such as power-law degree distribution. However, most of these models (e.g. the well-known BA model) are based on linear growth of these systems. In this paper, we propose a network model with accelerating growth and aging effect, resulting in an emergence of super hubs which is consistent with the empirical observation in citation networks.  相似文献   

13.
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.  相似文献   

14.
Yu H  Wang J  Liu C  Deng B  Wei X 《Chaos (Woodbury, N.Y.)》2011,21(4):043101
In this paper, we investigate the effect of a high-frequency driving on the dynamical response of excitable neuronal systems to a subthreshold low-frequency signal by numerical simulation. We demonstrate the occurrence of vibrational resonance in spatially extended neuronal networks. Different network topologies from single small-world networks to modular networks of small-world subnetworks are considered. It is shown that an optimal amplitude of high-frequency driving enhances the response of neuron populations to a low-frequency signal. This effect of vibrational resonance of neuronal systems depends extensively on the network structure and parameters, such as the coupling strength between neurons, network size, and rewiring probability of single small-world networks, as well as the number of links between different subnetworks and the number of subnetworks in the modular networks. All these parameters play a key role in determining the ability of the network to enhance the outreach of the localized subthreshold low-frequency signal. Considering that two-frequency signals are ubiquity in brain dynamics, we expect the presented results could have important implications for the weak signal detection and information propagation across neuronal systems.  相似文献   

15.
We make a mapping from Sierpinski fractals to a new class of networks, the incompatibility networks, which are scale-free, small-world, disassortative, and maximal planar graphs. Some relevant characteristics of the networks such as degree distribution, clustering coefficient, average path length, and degree correlations are computed analytically and found to be peculiarly rich. The method of network representation can be applied to some real-life systems making it possible to study the complexity of real networked systems within the framework of complex network theory.  相似文献   

16.
Boolean networks have been used to study numerous phenomena, including gene regulation, neural networks, social interactions, and biological evolution. Here, we propose a general method for determining the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In particular, we solve the critical condition for systems of units operating according to canalizing functions and present strong numerical evidence that our approach correctly predicts the phase transition from order to chaos in such systems.  相似文献   

17.
Synchronization is an emergent property in networks of interacting dynamical elements. Here we review some recent results on synchronization in randomly coupled networks. Asymptotical behavior of random matrices is summarized and its impact on the synchronization of network dynamics is presented. Robert May's results on the stability of equilibrium points in linear dynamics are first extended to systems with time delayed coupling and then nonlinear systems where the synchronized dynamics can be periodic or chaotic. Finally, applications of our results to neuroscience, in particular, networks of Hodgkin-Huxley neurons, are included.  相似文献   

18.
Dynamical networks are important models for the behaviour of complex systems, modelling physical, biological and societal systems, including the brain, food webs, epidemic disease in populations, power grids and many other. Such dynamical networks can exhibit behaviour in which deterministic chaos, exhibiting unpredictability and disorder, coexists with synchronisation, a classical paradigm of order. We survey the main theory behind complete, generalised and phase synchronisation phenomena in simple as well as complex networks and discuss applications to secure communications, parameter estimation and the anticipation of chaos.  相似文献   

19.
We discuss two methods that can be used to estimate the impact of internal and external variability on nonlinear systems, and demonstrate their utility by comparing two experimentally implemented oscillatory genetic networks with different designs. The methods allow for rapid estimations of intrinsic and extrinsic noise and should prove useful in the analysis of natural genetic networks and when constructing synthetic gene regulatory systems.  相似文献   

20.
Synchronization processes in networks of spatially extended dynamical systems are analytically and numerically studied. We focus on the relevant case of networks whose elements (or nodes) are spatially extended dynamical systems, with the nodes being connected with each other by scalar signals. The stability of the synchronous spatio-temporal state for a generic network is analytically assessed by means of an extension of the master stability function approach. We find an excellent agreement between the theoretical predictions and the data obtained by means of numerical calculations. The efficiency and reliability of this method is illustrated numerically with networks of beam-plasma chaotic systems (Pierce diodes). We discuss also how the revealed regularities are expected to take place in other relevant physical and biological circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号