首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To systematically explore the influence of the bulky aromatic ring skeleton with a large conjugated pi-system on the structures and properties of their complexes, six CuII, CoII, and NiII complexes with the anthracene-based carboxylic ligand anthracene-9-carboxylic acid (HL1), were synthesized and characterized, sometimes incorporating different auxiliary ligands: [Cu2(L1)4(CH3OH)2](CH3OH) (1), [Cu4(L1)6(L2)4](NO3)2(H2O)2 (2), {[Cu2(L1)4(L3)](CH3OH)0.25}infinity (3), [Co2(L1)4(L4)2(micro-H2O)](CH3OH) (4), {[Co(L1)2(L5)(CH3OH)2]}infinity (5), and {[Ni(L1)2(L5)(CH3OH)2]}infinity (6) (L2 = 2,2'-bipyridine, L3 = 1,4-diazabicyclo[2.2.2]octane, L4 = 1,10-phenanthroline, and L5 = 4,4'-bipyridine). 1 has a dinuclear structure that is further assembled to form a one-dimensional (1D) chain and then a two-dimensional (2D) network by the C-H...O H-bonding and pi...pi stacking interactions jointly. 2 takes a tetranuclear structure due to the existence of the chelating L2 ligand. 3 possesses a 1D chain structure by incorporating the related auxiliary ligand L3, which is further interlinked via interchain pi...pi stacking, resulting in a three-dimensional (3D) network. 4 also has a dinuclear structure and then forms a higher-dimensional supramolecular network through intermolecular pi...pi stacking and/or C-H...pi interactions. 5 and 6 are isostructural complexes, except they involve different metal ions, showing 1D chain structures, which are also assembled into 2D networks from the different crystallographic directions by interchain pi...pi stacking and C-H...pi interactions, respectively. The results reveal that the steric bulk of the anthracene ring in HL1 plays an important role in the formation of 1-6. The magnetic properties of the complexes were investigated, and the very long intermetallic distances result in weak magnetic coupling, with the exception of 1 and 3, which adopt the typical paddle-wheel structure of copper acetate and are thus strongly coupled.  相似文献   

2.
将配体L[2,5-二-(3,5-二甲基吡唑-4-巯基)-1,3,4-噻二唑]与Co(NO3)2 6H2O,Cd(NO3)2 4H2O和MnCl2 4H2O进行配位反应,得到三个配合物[Co(L)2(H2O)4](NO3)2 4(CH3CH2OH)(1),[Cd(L)2(H2O)4](NO3)2 4(CH3CH2OH)(2),[Mn(L)2(Cl)2(CH3OH)2]2(CH3OH)(3),并用元素分析,FT-IR和X射线单晶衍射进行了表征.分析结果表明,配体L呈"U"形,配合物1~3呈"S"形.配合物中Co(II),Cd(II),Mn(II)的配位环境均为扭曲八面体,每个金属离子同时和两个配体进行配位.配体和配合物体外抑菌活性研究结果表明,配体及其配合物都有一定的抑菌活性.  相似文献   

3.
Dong YB  Sun T  Ma JP  Zhao XX  Huang RQ 《Inorganic chemistry》2006,45(26):10613-10628
Four new oxadiazole-bridging ligands (L1-L4) were designed and synthesized by the reaction of 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole with isonicotinoyl chloride and nicotinoyl chloride, respectively. L1 and L3 are unsymmetric single-armed ligands (4- or 3-pyridinecarboxylate arm), and L2 and L4 are symmetric double-armed ligands (4- or 3-pyridinecarboxylate arms). Nine new complexes, [Ag(L1)]PF6.CH3OH (1), [Ag(L1)]ClO4.CH3OH (2), Cu(L2)(NO3)2.2(CH2Cl2) (3), [Cu(L2)2](ClO4)2.2(CH2CCl2) (4), Cu(L2)Cl2 (5), [Cu4(L3)2(H2O)2](L3)4(ClO4)4 (6), [Ag(L4)(C2H5OH)]ClO4 (7), [Ag(L4)(C2H5OH)]BF4 (8), and [Ag(L4)(CH3OH)]SO3CF3 (9), were isolated from the solution reactions based on these four new ligands, respectively. L1, L2, and L3 act as convergent ligands and bind metal ions into discrete molecular complexes. In contrast, L4 exhibits a divergent spacer to link metal ions into one-dimensional coordination polymers. New coordination compounds were fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. In addition, the luminescent and electrical conductive properties of these new compounds were investigated.  相似文献   

4.
Four semirigid ditopic ligands, N,N'-bis(3-pyridylmethyl)-pyromellitic diimide (L(1)), N,N'-bis(4-pyridylmethyl)-pyromellitic diimide (L(2)), N,N'-bis(3-pyridylmethyl)-naphthalene diimide (L(3)), and N,N'-bis(4-pyridylmethyl)-naphthalene diimide (L(4)), reacted with Cd(NO(3))(2) to result in four cadmium(II) complexes, namely, {[Cd(2)(L(1))(2)(NO(3))(4)(CH(3)OH)(4)]·H(2)O} (1), [Cd(L(2))(NO(3))(2)(CH(3)OH)(2)·Cd(2)(L(2))(3)(NO(3))(4)]·{4(HCCl(3))·2H(2)O}(n) (2), {[Cd(L(3))(2)(NO(3))(2)]}(n) (3), and {[Cd(L(4))(2)(NO(3))(2)]·2(CHCl(3))}(n) (4). These complexes have been characterized by elemental analyses, powder X-ray diffraction, thermogravimetric (TG) analyses, IR spectroscopy, and single-crystal X-ray diffraction. Structural analyses show that four types of structures are formed: (1) a discrete M(2)L(2) ring with two Cd ions and two cis-L(1) ligands comprising a zero-dimensional molecular rectangle (0D), (2) an unusual zigzag linear chain and a one-dimensional ladder existing simultaneously in the crystal lattice (1D), (3) a two-dimensional network of the (4,4) net structure (2D), and (4) an unusual chiral three-dimensional framework with 5-fold interpenetrating diamond (dia) topology (3D). In these complexes, the ligands exhibit different coordination modes and construct various architectures by bridging Cd(NO(3))(2) inorganic building blocks. These results suggest that structural diversity of the complexes is tunable by ligand modifications, that is, varying the ligand spacer bulkiness or substituent position of terminal group. Furthermore, gas adsorption measurements indicate that 4 possesses moderate CO(2) uptake and some adsorption selectivity for CO(2) over N(2).  相似文献   

5.
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of metal complexes with two structurally related ligands, 9-acridinecarboxylic acid (HL(1)) and 4-quinolinecarboxylate acid (HL(2)), [Cu(2)(mu(2)-OMe)(2)(L(1))(2)(H(2)O)(0.69)](n) 1, [Cu(2)(L(1))(4)(CH(3)OH)(2)] 2, [Cu(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 3, [Mn(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 4, [Co(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 5, [Cu(L(2))(2)](n) 6, [Mn(L(2))(2)(H(2)O)](n) 7, and [Co(L(2))(2)(H(2)O)](n) 8. 1 is a three-dimensional (3D) polymer with an interpenetrating NbO type network showing one-dimensional (1D) channels, whereas 2 and 3 take bi- and trinuclear structures, respectively, because of the differences in basicity of the reaction systems in preparing the three complexes. 4 and 5 have trinuclear structures similar to that of 3. In 1-5, ligand L(1) performs different coordination modes with N,O-bridging in 1 and O,O'-bridging in 2-5, and the metal ions also show different coordination geometries: square planar in 1, square pyramidal in 2, and octahedral in 3-5. 6 has a two-dimensional structure containing (4,4) grids in which L(2) adopts the N,O-bridging mode and the Cu(II) center takes square planar geometry. 7 and 8 are isostructural complexes showing 1D chain structures, with L(2) adopting the O,O-bridging mode. In addition, the intermolecular O-H...N hydrogen bonds and pi-pi stacking interactions further extend the complexes (except 1 and 6), forming 3D structures. The magnetic properties of 2-7 have been investigated and discussed in detail.  相似文献   

6.
The reactions of potentially hexadentate H2bbpen (N,N'-bis(2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)-ethylenediamine, H2L1), H2(Cl)bbpen (N,N'-bis(5-chloro-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L2), and H2(Br)bbpen (N,N'-bis(5-bromo-2-hydroxybenzyl)-N,N'-bis(2-pyridylmethyl)ethylenediamine, H2L3) with Ln(III) ions in the presence of a base in methanol resulted in three types of complexes: neutral mononuclear ([LnL(NO3)]), monocationic dinuclear ([Ln2L2(NO3)]+), and monocationic trinuclear ([Ln3L2(X)n(CH3OH)]+), where X = bridging (CH3COO-) and bidentate ligands (NO3-, CH3COO-, ClO4-) and n is 4. The formation of a complex depends on the base (hydroxide or acetate) and the size of the respective Ln(III) ion. All complexes were characterized by infrared spectroscopy, mass spectrometry, and elemental analyses; in some cases, X-ray diffraction studies were also performed. The structures of the neutral mononuclear [Yb(L1)(NO3)], dinuclear [Pr2(L1)2(NO3)(H2O)]NO3.CH3OH and [Gd2(L1)2(NO3)]NO3.CH3OH.3H2O, and trinuclear [Gd3(L3)2(CH3COO)4(CH3OH)]ClO4.5CH3OH and [Sm3(L1)2(CH3COO)2(NO3)2(CH3OH)]NO3.CH3OH.3.65H2O were solved by X-ray crystallography. The [LnL(NO3)] or [Ln2L2(NO3)]+ complexes could be converted to [Ln3L2(X)n(CH3OH)]+ complexes by the addition of 1 equiv of a Ln(III) salt and 2-3 equiv of sodium acetate in methanol. The trinuclear complexes were found to be the most stable of the three types, which was evident from the presence of the intact monocationic high molecular weight parent peaks ([Ln3L2(X)n]+) in the mass spectra of all the trinuclear complexes and from the ease of conversion from the mononuclear or dinuclear to the trinuclear species. The incompatibility of the ligand denticity with the coordination requirements of the Ln(III) ions was proven to be a useful tool in the construction of multinuclear Ln(III) metal ion arrays.  相似文献   

7.
Fused pyridazines (1,2,3,6,7,8-hexahydro-cinnolino[5,4,3-cde]cinnoline, L and its 2,2,7,7-tetramethyl derivative, Me4L) are designed as rigid multidentate ligands for the construction of framework solids. In combination with copper(I) bromide (iodide) they provide excellent structural examples for predictive engineering and the possibilities for further fine-tuning of the framework architectures facilitated by the tetradentate function of the ligands and effective cooperation of organic and inorganic bridges. This study features control over helical structures for (CuX)n chains and homo/heterochiral combination of the helices in the lattice, the design of a range of channelled and tubular CuX networks and the structural significance of ligand shape complementarity. 3D tetragonal Cu2X2(L) frameworks exist either as chiral or achiral supramolecular isomers Cu2I2(Me4L) and Cu12I12[Cu(CH3CN)]3(L)(6-)Cu3I6.CH3CN illustrate 3D hexagonal channelled and tubular arrays; Cu2I2(Me4L)(CH3CN) and Cu4I4(L)(CH3CN)2 complexes are 1D polymers.  相似文献   

8.
We present here two ligand classes based on a bis(pyrazolyl)methane scaffold functionalized with a rigid (-Ph-S-Ph) or flexible (-CH(2)-S-Ph) thioether function: L(R)PhS (R = H, Me) and L(R)CH(2)S (R = H, Me, iPr). The X-ray molecular structures of Ag(I) and Cu(I) binary complexes with L(R)PhS or L(R)CH(2)S using different types of counterions (BF(4)(-), PF(6)(-), and CF(3)SO(3)(-)) are reported. In these complexes, the ligands are N(2) bound on a metal center and bridge on a second metal with the thioether group. In contrast, when using triphenylphosphine (PPh(3)) as an ancillary ligand, mononuclear ternary complexes [M(L)PPh(3)](+) (M = Cu(I), Ag(I); L = L(R)PhS, L(R)CH(2)S) are formed. In these complexes, the more flexible ligand type, L(R)CH(2)S, is able to provide the N(2)S chelation, whereas the more rigid L(R)PhS ligand class is capable of chelating only N(2) because the thioether function preorganized, as it did in the coordination polymers, to point away from the metal center. Rigid potential-energy surface scans were performed by means of density functional theory (DFT) calculations (B3LYP/6-31+G) on the two representative ligands, L(H)PhS and L(H)CH(2)S. The surface scans proved that the thioether function is preferably oriented on the opposite side of the bispyrazole N(2) chelate system. These results confirm that both ligand classes are suitable components for the construction of coordination polymers. Nevertheless, the methylene group that acts as a spacer in L(H)CH(2)S imparts an inherent flexibility to this ligand class so that the conformation responsible for the N(2)S chelation is energetically accessible.  相似文献   

9.
Three different ONO donor acetyl hydrazone Schiff bases have been synthesized from the condensation of acetic hydrazide with three different carbonyl compounds: salicylaldehyde (HL(1)), 2-hydroxyacetophenone (HL(2)), and 2, 3-dihydroxybenzaldehyde (HL(3)). These tridentate ligands are reacted with Ni(OOCCF(3))(2)·xH(2)O to yield three new Ni(II) complexes having distorted octahedral geometry at each Ni center: [Ni(L(1))(OOCCF(3))(CH(3)OH)](2) (1), [Ni(L(2))(OOCCF(3))(H(2)O)](2) (2), and [Ni(L(3))(L(3)H)](OOCCF(3))(H(2)O)(1.65)(CH(3)OH)(0.35) (3). The ligands and the complexes have been characterized by elemental analysis and IR and UV-vis spectroscopy, and the structures of the complexes have been established by single crystal X-ray diffraction (XRD) study. 1 and 2 are centrosymmetric dinuclear complexes and are structural isomers whereas 3 is a bis chelated cationic monomer coordinated by one neutral and one monoanionic ligand. O-H···O hydrogen bonds in 3 lead to the formation of a dimer. Slight steric and electronic modifications in the ligand backbone provoke differences in the supramolecular architectures of the complexes, leading to a variety of one, two, and three-dimensional hydrogen bonded networks in complexes 1-3 respectively. Variable temperature magnetic susceptibility measurements reveal that moderate antiferromagnetic interactions operate between phenoxo bridged Ni(II) dimers in 1 and 2 whereas very weak antiferromagnetic exchange occurs through hydrogen bonding and π-π stacking interactions in 3. All complexes are proved to be efficient catalysts for the epoxidation of alkenes by NaOCl under phase transfer condition. The efficiency of alkene epoxidation is dramatically enhanced by lowering the pH, and the reactions are supposed to involve high valent Ni(III)-OCl or Ni(III)-O· intermediates. 3 is the best epoxidation catalyst among the three complexes with 99% conversion and very high turnover number (TON, 396).  相似文献   

10.
李理 《无机化学学报》2021,37(1):121-130
采用准刚性的双吡啶化合物3,7-di(3-pyridyl)-1,5-dioxa-3,7-diazacyclooctane(L),合成了4个过渡金属配合物[Co(NO3)(H2O)2(L)2]NO3(1)、[Co2Cl4(L)2]·CH2Cl2(2)、[Cd2(AcO)4(L)2]·4CH3OH(3)和[Cd2(NO3)2(CH3OH)2(H2O)2(L)2](NO3)2·2H2O(4)。单晶衍射分析表明,配合物1是单核结构,配合物2是24-元环状双核结构,而配合物3和4为多边形双核结构。在这些配合物中,双吡啶配体分别采用了单齿、trans-和cis-桥连3种不同配位方式。配合物经过了元素分析、红外、热重和X射线单晶结构分析表征。  相似文献   

11.
Yang L  Houser RP 《Inorganic chemistry》2006,45(23):9416-9422
Copper(I) chloro complexes were synthesized with a family of ligands, HL(R) [HL(R) = N-(2-pyridylmethyl)acetamide, R = null; 2-phenyl-N-(2-pyridylmethyl)acetamide, R = Ph; 2,2-dimethyl-N-(2-pyridylmethyl)propionamide, R = Me3; 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide, R = Ph3)]. Five complexes were synthesized from the respective ligand and cuprous chloride: [Cu(HL)Cl]n (1), [Cu2(HL)4Cl2] (2), [Cu2(HL(Ph))2(CH3CN)2Cl2] (3), [Cu2(HL(Ph)3)2Cl2] (4), and [Cu(HL(Me)3)2Cl] (5). X-ray crystal structures reveal that for all complexes the ligands coordinate to the Cu in a monodentate fashion, and inter- or intramolecular hydrogen-bonding interactions formed between the amide NH group and either amide C=O or chloro groups stabilize these complexes in the solid state and strongly influence the structures formed. Complexes 1-5 display a range of structural motifs, depending on the size of the ligand substituent groups, hydrogen bonding, and the stoichiometry of the starting materials, including a one-dimensional coordination polymer chain (1) and binuclear (2-4) or mononuclear (5) structures.  相似文献   

12.
The reactions of four flexible tetradentate ligands, 1,3-bis(2-pyridylthio)propane (L1), 1,4-bis(2-pyridylthio)butane (L2), 1,5-bis(2-pyridylthio)pentane (L3) and 1,6-bis(2-pyridylthio)hexane (L4) with AgX (X = BF4-, ClO4-, PF6-, or CF3SO3-) lead to the formation of seven new complexes: [AgL1(BF4)]2 (1), [[AgL2](ClO4)]infinity (2), [[AgL2(CH3CN)](PF6)]infinity (3), [[AgL3](BF4)(CHCl3)]2 (4), [[AgL3(CF3SO3)](CH3OH)(0.5)]infinity (5), [[Ag2L4(2)](BF4)2]infinity (6), and [[AgL4](PF6)]infinity (7), which have been characterized by elemental analyses, IR spectroscopy, and X-ray crystallography. Single-crystal X-ray analyses show that complexes 1 and 4 possess dinuclear macrometallacyclic structures, and complexes 2, 3 and 5-7 take chain structures. In all the complexes, the nitrogen atoms of ligands preferentially coordinate to silver atoms to form normal coordination bonds, while the sulfur atoms only show weak interactions with silver atoms and the intermolecular AgS weak contacts connect the low-dimensional complexes into high-dimensional supramolecular networks. Additional weak interactions, such as pi-pi stacking, F...F weak interactions, Ag...O contacts or C-H...O hydrogen bonds, also help to stabilize the crystal structures. It was found that the parity of the -(CH2)n- spacers (n = 3-6) affect the orientation of the two terminal pyridyl rings, thereby significantly influence the framework formations of these complexes. The coordination features of ligands and their conformation changes between free and coordination states have been investigated by DFT calculations.  相似文献   

13.
三种新型铜配合物的合成、结构及理论计算   总被引:1,自引:0,他引:1  
合成了一个柔性配体1,3-二(N-咪唑基甲基)苯(mbix)(1), 并将其与不同Cu盐组装, 得到3个新配合物[Cu(mbix)2(H2O)]·2NO3·CH3OH(2), [Cu(mbix)(N3)(OAc)]·CH3OH(3)和[Cu(mbix)2]·SiF6·2CH3OH(4), 并对其进行了元素分析、红外光谱及X 射线单晶结构分析表征. 配合物2拥有二维二重贯穿结构, 配合物3中两个铜离子通过两个叠氮酸根桥连成双核铜, 它再通过配体连接形成一维绞链状结构, 而配合物4通过配体桥联成一维无限链状结构. 结果显示, 平衡阴离子在配合物的组装过程中起着非常重要的作用. 此外还对配体及3个配合物中配体的构象进行了理论计算.  相似文献   

14.
Rhenium and technetium are known for their useful applications in nuclear medicine with similar properties. In this study, new diamido dipyridino (N(4)) water-soluble ligands (2-C(5)H(4)NCH(2)NHCO)(2)CH(2), 1 (L(1)H2), (2-C(5)H(4)NNHNHCO)(2)CH(2), 2, and [2-C(5)H(4)N(+)(O)(-)CH(2)NHCO](2)CH(2), 3, were synthesized. Reaction of L(1)H2 with ReOCl(3)(PPh(3))(2) resulted in the novel six-coordinated rhenium(V) complex, trans-ReO(L(1))(OEt), 4. The complex was characterized by spectroscopic methods, and its X-ray crystallographic analysis revealed that rhenium is coordinated to four nitrogen atoms of the ligand and to two oxygen atoms from the deprotonated ethanol and the oxo group respectively in a distorted octahedral geometry. In solution, complex 4 was transformed to a new complex 5, which was proved to be the dinuclear complex mu-oxo [ReO(L(1))](2)O. Reaction of 1 with [n-Bu(4)N][ReOCl(4)] resulted in the neutral complex 6, trans-[ReO(L(1))]Cl. Similarly, when ligand 1 was reacted with [n-Bu(4)N][(99g)TcOCl(4)], the neutral trans-[(99)TcO(L(1))]Cl complex 7 was formed, which upon dissolution transformed into a cationic complex 8, trans-[(99)TcO(L(1))(OH(2))](+)Cl(-). The single-crystal X-ray structure of 8 reveals that the coordination sphere about technetium is a distorted octahedron with four nitrogen atoms in the equitorial plane, while doubly bonded oxygen and coordinated water occupy the apical positions. Further dissolution of 8 resulted in the formation of dinuclear mu-oxo [TcO(L(1))](2)O, 9. This study shows that Tc and Re have similar metal core structures in solution for diamido dipyridino systems, besides similarity in geometrical structure, proved by the X-ray structures on the same ligands.  相似文献   

15.
Ohi H  Tachi Y  Itoh S 《Inorganic chemistry》2004,43(15):4561-4563
By By combining a tripodal tripyridine ligand containing a 1,3,5-triethylbenzene spacer (L) with several divalent transition-metal chlorides, we have selectively prepared a capsule-type supramolecular complex, [PdII3(L)2Cl6] x 2H2O, and one-dimensional (1D) coordination polymer complexes, ([CuII(L)Cl2] x C2H5OH)n, ([CoII3(L)2Cl6] x 2CH2Cl2)n, and ([ZnII3(L)2Cl6] x 2H2O)n, with a zigzag polymer chain, a linear polymer chain, and a ladder polymer chain structure, respectively. All the structures were established in detail by single-crystal X-ray diffraction analysis, and the factors inducing the structural differences among the complexes are discussed by taking account of the differences in coordination geometry (square planar vs tetrahedral) as well as metal-ligand binding strength in the complexes.  相似文献   

16.
The potentially pentadentate ligand 2,6-bis[N-(2'-pyridylmethyl)carbamyl]pyridine (H2L1), readily prepared from reaction of a diester of pyridine-2,6-dicarboxylic acid (H2dipic) and 2-aminomethylpyridine (ampy), shows limited tendency to form 1:1 M:L complexes with labile metal ions, although [CuL1] and [NiL1] were observed as minor species, the latter characterized by a crystal structure analysis. A mononuclear complex formed with inert Co(III) was characterized by a crystal structure as the neutral 1:2 complex [Co(L1)(HL1)] with two ligands acting as tridentate ligands, one coordinated by the central pyridine and its two flanking deprotonated amido groups, and the other by the central pyridine, one amido and one terminal pyridine group, with the remaining poorly coordinating protonated amide remaining unbound along with other terminal pyridine groups. Fe(III) is known to form a symmetrical 1:2 complex, but that complex is anionic due to binding of all four deprotonated amido groups; the unsymmetrical neutral Co(III) complex converts into a symmetrical anionic species only on heating for hours in aqueous base in the presence of activated carbon. The most remarkable tendency of H2L1, however, is towards the formation of robust double helical complexes: a dinuclear Cu(II) complex [Cu2L1(2)] forms, as well as a trinuclear Ni(II) complex [Ni(3)(L1)2(OAc)2(MeOH)2]. Moreover, in the presence of added H2dipic, the tetranuclear complex [Cu4(L1)2(dipic)2(OH2)2] is obtained. All helical complexes have been characterized by X-ray crystal structure analyses, and all crystals feature a racemic mixture of left- and right-handed double helices stabilized by inter-ligand pi-stacking (inter-ring distances of 3.2-3.8 A) of ligands which each span several metal ions. Using the chelating ligand pentane-2,4-dione (acac), each of the two pairs of adjacent monodentate ligands in [Ni3(L1)2(OAc)2(OH2)2] have been shown to be available for substitution without destroying the helical structure, to form [Ni3(L1)2(acac)2], also characterized by a crystal structure.  相似文献   

17.
Four 2-oxo-1,2-dihydroquinoline-3-carbaldehyde N-substituted thiosemicarbazone ligands (H(2)-OQtsc-R, where R = H, Me, Et or Ph) and their corresponding new copper(II) complexes [CuCl(2)(H(2)-OQtsc-H)]·2H(2)O (1), [CuCl(2)(H(2)-OQtsc-Me)]·2H(2)O (2), [CuCl(2)(H(2)-OQtsc-Et)(CH(3)OH)]Cl (3) and [CuCl(H-OQtsc-Ph)]·CH(3)OH (4) have been synthesized in order to correlate the effect of terminal N-substitution on coordination behaviour, structure and biological activity. Single crystal X-ray diffraction studies revealed that the complexes 1, 2 and 3 have square pyramidal geometry around the central metal ion. In the complexes 1 and 2, the copper ion is coordinated by the ligand with ONS donor atoms, one chloride ion in apical position and the other chloride in the basal plane. Complex 3 consists of [CuCl(2)(H(2)-OQtsc-Et)(CH(3)OH)](+) cation and a chloride as counter ion. The copper ion is coordinated by the ligand with ONS donor atoms and by one chloride ion in the basal plane. One methanol molecule is bonded through its neutral oxygen in the apical position. Complex 4 is square planar with the ligand coordinating through uni-negative tridentate ONS(-) and by one chloride ion in the basal plane. The binding of complexes with lysozyme protein was carried out by fluorescence spectroscopy. Investigations of antioxidation properties showed that all the copper(II) complexes have strong radical scavenging properties. The cytotoxicity of the complexes 3 and 4 against NIH 3T3 and HeLa cell lines showed that synergy between the metal and ligands results in a significant enhancement in the cell death with IC(50) of ~10-40 μM. A size dependence of substitution at terminal N in the thiosemicarbazones on the biological activities of the complexes has been observed.  相似文献   

18.
A series of Zn(II), Cd(II), Co(II), Co(III) and Mn(III) complexes with the Schiff base [(CH3)2NCH2CH2N=CHC6H3(OH)(OMe)], LH, derived from 2-dimethylaminoethylamine and o-vanillin, has been synthesised and structures of all the products have been established by X-ray crystallography. In the cases of zinc and cadmium, dimeric complexes [Zn(LH)2(NCS)] [Zn2(L)(mu(1,1)-CH3COO)(NCS)3] (1), [Cd2(L)2(Cl)2] (2) and [Cd2(L)2(NCS)2] (3), and for cobalt and manganese, monomeric complexes [Co(LH)2(NCS)]2 [Co(NCS)4] (4), [Co(LH)2(NCS)]ClO4 (5), [Co(L)(N3)(o-vanillinate)] x 0.5 MeOH (6) and [Mn(LH)2(MeOH)2](ClO4)3 (7), are formed with various terminal ligands. All the complexes have been characterised by elemental analysis and IR spectra. UV-Vis and NMR spectroscopy, magnetic, and electrochemical studies, were also carried out where feasible. The Schiff base functions as a bi-, tri- or tetra-dentate chelating agent and coordinates via the protonated or deprotonated phenolic oxygen, amine and imine nitrogens, and only in case of 1 with the methoxy oxygen atoms, to the metal ion leading to the formation of mono- or bi-metallic complexes.  相似文献   

19.
Mixed-ligand Cu(II) complexes with deprotonated trimesic acid and phenanthroline-type ligands were synthesised by solvothermal methods to form 2-D infinite hexagonal hydrogen bonded structures with additional trimesic acid (H3tma) molecules. The complex [Cu(phendione)2(H2tma)2].2(H3tma).1.65(CF3CH2OH).2.5(H2O), where phendione = 1,10-phenanthroline-5,6-dione, has hydrogen bonded networks of [Cu(phendione)2(H2tma)2] complexes interspersed with layers of H3tma with a topologically identical hydrogen bonding network. Whereas in [Cu(1,10-phenanthroline)(H2tma)2]2.2(H3tma), a dimeric Cu(II) complex hydrogen bonds directly to additional H3tma molecules to form a three-layered 2-D network resembling an infinite sandwich. The synthesis and structures of simple Cu(II) complexes of the phendione ligand are also reported. One of these, [Cu(phendione)2Br2] shows a particularly polar packing arrangement.  相似文献   

20.
Six noninterpenetrating organic-inorganic hybridized coordination complexes, [Mn(3)(2)(H(2)O)(2)](ClO(4))(2).2 H(2)O (5), [Mn(3)(2)(H(2)O)(2)](NO(3))(2) (6), [Mn(3)(2)(N(3))(2)].2 H(2)O (7), [Cu(3)(2)(H(2)O)(2)](ClO(4))(2) (8), [Mn(4)(2)(H(2)O)(SO(4))].CH(3)OH.5 H(2)O (9) and [Mn(4)(2)](ClO(4))(2) (10) were obtained through self-assembly of novel tripodal ligands, 1,3,5-tris(1-imidazolyl)benzene (3) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (4) with the corresponding metal salts, respectively. Their structures were determined by X-ray crystallography. The results of structural analysis of complexes 5, 6, 7, and 8 with rigid ligand 3 indicate that their structures are mainly dependant on the nature of the organic ligand and geometric need of the metal ions, but not influenced greatly by the anions and metal ions. While in complexes 9 and 10, which contain the flexible ligand 4, the counteranion plays an important role in the formation of the frameworks. Entirely different structures of complexes 5 and 10 indicate that the organic ligands greatly affect the structures of assemblies. Furthermore, in complexes 5 and 6, the counteranions located between the cationic layers can be exchanged by other anions. Reversible anion exchanges between complexes 5 and 6 without destruction of the frameworks demonstrate that 5 and 6 can act as cationic layered materials for anion exchange, as determined by IR spectroscopy, elemental analyses, and X-ray powder diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号