首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for performing nuclear magnetic resonance (NMR) measurements simultaneously from more than a single radiofrequency (RF) coil is presented. The method employs the detection of magnetic resonance signals in an array of detectors, where each detector is responsible for detecting a unique frequency bandwidth or a magnetic resonance signal from a unique location in a region in a primary, substantially homogeneous, static magnetic field. The detectors may be separated logically into groups, whereby all the detectors in a given group are essentially RF-decoupled from each other to substantially eliminate cross-talk by switching circuits or by being placed from each other sufficiently remotely. Sampling of detected signals from detectors in this array is done simultaneously over groups of noninteracting detectors. The detected signals from all detectors in a given group are simultaneously transmitted to a single preamplifier, thus increasing significantly the signal-to-noise ratio (SNR) in that preamplifier. Prior to transmitting each detected NMR signal of each detector to the preamplifier, each detected signal is separately and uniquely encoded electronically. This provides a method whereby the signal of each detector is uniquely encoded. Accumulating all these encoded signals, which were simultaneously received in a number of RF detectors into a single amplifier, results in the total signal having a high SNR ratio. This total amplified signal is later decoded into each detector's original signal by a decoding circuitry. Conventional magnetic resonance imaging (MRI) techniques may be thereafter applied to obtain an image. Or else, conventional NMR techniques may be thereafter applied to obtain an improved SNR from a sample, using a single preamplifier with a multitude of detectors. Applying this method to a large number of miniature and closely packed RF detectors placed in an array-like configuration results in an MRI technique with a very fast acquisition time, an increased SNR and a high spatial resolution equivalent to the number of detectors per unit of length. Deblurring and decoupling algorithms allow for images from layers as deep as 6 mm to be acquired.  相似文献   

2.
将水下声传播规律融入到算法设计中可以有效提高被动声呐目标检测性能。当声源位置未知时,广义似然比检测器和贝叶斯检测器分别通过搜索和积分的方式来消除声源位置不确定性的影响。但是,基于有限个信号波前实现的广义似然比检测器和贝叶斯检测器在某些声源位置上存在性能大幅下降的问题。为此,利用水下声传播的物理特性,提出了一种稳健的子空间检测器——匹配模态空间检测器,稳健的意义在于:当阵列获取到的辐射声信号能量给定时,检测器可以在不同声源位置情况下提供相同的检测性能。该检测器通过模态空间一定程度上利用了海洋环境知识,获得了比具有相同稳健性的能量检测器更好的检测性能。典型浅海环境中的仿真实验对比结果表明:匹配模态空间检测器相比广义似然比检测器和贝叶斯检测器的峰值性能下降较小、所需的计算量更少、对环境失配的宽容性更好。  相似文献   

3.
Detection of echolocation calls is fundamental to quantitative analysis of bat acoustic signals. Automated methods of detection reduce the subjectivity of hand labeling of calls and speed up the detection process in an accurate and repeatable manner. A model-based detector was initialized using a baseline energy threshold detector, removing the need for hand labels to train the model, and shown to be superior to the baseline detector using synthetic calls in two experiments: (1) an artificial environment and (2) a field playback setting. Synthetic calls using a piecewise exponential frequency modulation function from five hypothetical species were employed to control the signal-to-noise ratio (SNR) in each experiment and to provide an absolute ground truth to judge detector performance. The model-based detector outperformed the baseline detector by 2.5 dB SNR in the artificial environment and 1.5 dB SNR in the field playback setting. Atmospheric absorption was measured for the synthetic calls, and 1.5 dB increased the effective detection radius by between 1 and 7 m depending on species. The results demonstrate that hand labels are not necessary for training detection models and that model-based detectors significantly increase the range of detection for a recording system.  相似文献   

4.
以信噪比为性能指标,以相邻光通道之间的串扰和探测器前置放大器的热噪声作为系统噪声的来源,研究了基于无衍射光的光互连系统在不同对准偏差条件下的性能.研究表明,探测器阵列的尺寸参数可作为系统对准偏差容忍度和信噪比的优化参数.扩大探测器半径,减小探测器间距可以使系统包容更大的对准偏差,但为了保证一个可以接受的信噪比,探测器间距不应过小.此外,采用无衍射光的光互连系统具有不受纵向对准偏差影响的优点.  相似文献   

5.
With new generation neutron sources, traditional neutron detectors cannot satisfy the demands of the applications, especially under high flux. Furthermore, facing the global crisis in ~3He gas supply, research on new types of neutron detector as an alternative to ~3He is a research hotspot in the field of particle detection. GEM(Gaseous Electron Multiplier) neutron detectors have high counting rate, good spatial and time resolution, and could be one future direction of the development of neutron detectors. In this paper, the physical process of neutron detection is simulated with Geant 4 code, studying the relations between thermal conversion efficiency, boron thickness and number of boron layers. Due to the special characteristics of neutron detection, we have developed a novel type of special ceramic n THGEM(neutron THick GEM) for neutron detection. The performance of the n THGEM working in different Ar/CO_2 mixtures is presented, including measurements of the gain and the count rate plateau using a copper target X-ray source. A detector with a single n THGEM has been tested for 2-D imaging using a ~(252)Cf neutron source. The key parameters of the performance of the n THGEM detector have been obtained, providing necessary experimental data as a reference for further research on this detector.  相似文献   

6.
A new calibration method of detectors can be realized by using correlated photons generated in spontaneous parametric down-conversion (SPDC) effect of nonlinear crystal.An absolute calibration system of detector quantum efficiency is performed.And its principle and experimental setup are introduced.A continuouswave (CW) ultraviolet (351 nm),diode-pumped,frequency-doubled,and solid-state laser is used to pump BBO crystal.The quantum efficiencies of the photomultiplier at 633,702,and 789 nm are measured respectively.The coincidence peaks are observed using coincidence circuit.Some measurement factors including the filter bandwidth of trigger channel,the detector position alignment and polarization of the pump light are analyzed.The uncertainties of this calibration method are also analyzed,and the relative uncertainties of total calibration are less than 5.8%.The accuracy of this method could be improved in the future.  相似文献   

7.
一种鲁棒性的最小方差无失真响应波束形成算法及其应用   总被引:1,自引:0,他引:1  
理论上,自适应波束形成方法要比不依赖于输入数据的常规波束形成方法有更好的目标参数估计能力和干扰抑制能力。但在实际水声环境中,声传播模型、接收阵阵列流形以及信号统计特征等因素往往与实际情况存在一定的差异,导致传统的自适应波束形成方法性能下降。因此,提高自适应波束形成方法对上述因素的鲁棒性变得越来越重要。本文基于最差条件最优化的思想,改进MVDR(最小方差无失真响应)方法的约束条件提出了一种鲁棒性最小方差无失真响应自适应波束形成算法(R-MVDR),并对输入数据协方差矩阵和方向向量存在不确定性的情况进行了性能分析,推导给出了波束形成的加权向量和空间谱估计表达式,最后通过海上实验数据进行了验证。结果证明本文提出的算法在实际环境中有更好的方位分辨能力和干扰抑制能力。  相似文献   

8.
Massive multiple-input multiple-output (MIMO) is a key technology for modern wireless communication systems. In massive MIMO receivers, data detection is a computationally expensive task. In this paper, we explore the performance and the computational complexity of matrix decomposition based detectors in realistic channel scenarios for different massive MIMO configurations. In addition, data detectors based on decomposition algorithms are compared to the approximate-inversion detection (AID) methods. It is shown that the alternating-direction-method-of-multipliers-based-Infinity-Norm (ADMIN) detection is promising in realistic channel environment and the performance is stable even when the ratio of the base-station (BS) antenna elements to the number of users is small. In addition, this paper studies the performance of several detectors in imperfect channel state information (CSI) and correlated channels. Our work provides valuable insights for massive MIMO systems and very large-scale integration (VLSI) designers to select the appropriate massive MIMO detector based on their specifications.  相似文献   

9.
The bit-error rate (BER) performance of the generalized partial response maximum likelihood with autoregressive (GPRML-AR) channel model system in perpendicular magnetic recording (PMR) channel with thermal decay is obtained. The 128/130(0,16/8) run-length-limited (RLL) code is used as a recording code. The GPR channel consists of the PR1 channel followed by the reduction circuit of predicted noise. The BER performance is evaluated by computer simulation using a thermal decay model. The model has been obtained by using an approximate equation that represents amplitude degradation of the reproducing waveform with elapsed time based on the experimental data for CoPtCr-SiO2 PMR media. The Viterbi detector with an AR channel model is employed. Furthermore, long-term degradation of the required SNR to achieve a BER of 10−4 with elapsed time is obtained and the performance is compared with that of PR1ML system. The results show that the poorer the thermal stability of the medium becomes, the larger the SNR gain of the GPR1ML-AR system over the PR1ML system becomes. The SNR gain also increases with elapsed time.  相似文献   

10.
In quantum key distribution(QKD),the passive decoy-state method can simplify the intensity modulation and reduce some of side-channel information leakage and modulation errors.It is usually implemented with a heralded single-photon source.In Wang et al 2016(Phys.Rev.A 96032312),a novel passive decoy-state method is proposed by Wang et al,which uses two local detectors to generate more detection events for tightly estimating channel parameters.However,in the original scheme,the two local detectors are assumed to be identical,including the same detection efficiency and dark count rate,which is often not satisfied in the realistic experiment.In this paper,we construct a model for this passive decoy-state QKD scheme with two mismatched detectors and explore the effect on QKD performance with certain parameters.We also take the finite-size effect into consideration,showing the performance with statistical fluctuations.The results show that the efficiencies of local detectors affect the key rate more obviously than dark count rates.  相似文献   

11.
《中国物理 B》2021,30(9):97807-097807
Raman spectroscopy has been widely used to characterize the physical properties of two-dimensional materials(2 DMs). The signal-to-noise ratio(SNR or S/N ratio) of Raman signal usually serves as an important indicator to evaluate the instrumental performance rather than Raman intensity itself. Multichannel detectors with outstanding sensitivity, rapid acquisition speed and low noise level have been widely equipped in Raman instruments for the measurement of Raman signal. In this mini-review, we first introduce the recent advances of Raman spectroscopy of 2 DMs. Then we take the most commonly used CCD detector and IGA array detector as examples to overview the various noise sources in Raman measurements and analyze their potential influences on SNR of Raman signal in experiments. This overview can contribute to a better understanding on the SNR of Raman signal and the performance of multichannel detector for numerous researchers and instrumental design for industry, as well as offer practical strategies for improving spectral quality in routine measurement.  相似文献   

12.
A new method to calibrate detectors for elastic light scattering (ELS) measurement based on diffuse scattering from a Lambertian surface is presented. The method produces a calibration signal that is approximately seven orders of magnitude larger than a propane gas Rayleigh scattering calibration. The method also allows for calibration of detectors such as photodiodes, which are not sensitive enough to detect Rayleigh scattering for calibration but possess characteristics desirable for the measurement of soot ELS. Since the method is only suitable for backward scattering calibrations, transfer of calibration data from a backward- to a forward-oriented detector is accomplished with a secondary laser and integrating sphere. In demonstration experiments, calibration constants for photomultiplier tube (PMT) detectors obtained using both Rayleigh scattering and diffuse surface scattering agreed within experimental uncertainties as did measurements of in-flame scattering coefficients obtained with PMTs and photodiodes. However, achievable uncertainties with the diffuse-surface calibration approach were significantly reduced. More importantly, by enabling the use of photodiode detectors in ELS measurements, the new method facilitates operation at higher photon fluxes resulting in improved signal-to-noise ratios, reduced influence of photon shot noise, and the ability to achieve higher dynamic range in transient measurements.  相似文献   

13.
提出了一种新的SUSAN-Laplace角点算子。新算子首先使用拉普拉斯-高斯核对图像进行卷积,并将图像转换为二值或三值图像,然后使用SUSAN算子检测角点。这样既快速又具有SUSAN算子的位置精确性。SUSAN- Laplace角子具有较好的旋转、仿射、光照、尺度和噪声不变性,其计算速度也较快,比Harris角点快1.5倍,比SUSAN角点快6倍。应用中SUSAN-Laplace角子有一种快速算法,快速算法在计算拉普拉斯-高斯卷积时使用移位运算代替全部乘除法运算,能进一步提高计算速度。SUSAN-Laplace角子较其它角点算法能产生更丰富的角点,应用到SIFT算法中可提高对小目标的识别能力。  相似文献   

14.
徐强  潘丰  黄莉  王杏涛 《应用光学》2017,38(6):990-994
噪声等效温差(NETD)和信噪比(SNR)是衡量红外成像系统性能的重要指标之一,它与探测器的多种性能参数有关。分析了激光辐照干扰红外探测系统及不同材料类型红外探测器性能参数变化。通过理论定量计算分析,比对YAG激光(波长1.06 μm)干扰前后系统噪声等效温差、信噪比曲线,得到了激光损伤后的NETD比损伤前NETD大2至3个数量级,同时,激光干扰后的信噪比相对激光干扰前信噪比小2个多数量级,进一步推导出激光干扰对红外探测系统的影响。  相似文献   

15.
光伏型光电探测器的激光软损伤机制   总被引:5,自引:0,他引:5  
 对激光辐照功率密度高于探测器饱和阈值而低于其破坏阈值(中等功率的激光)时光伏型光电探测器的软损伤进行了理论研究,提出了一种新机制。当激光辐照功率密度超过探测器的饱和阈值以后,载流子的带间跃迁达到深度饱和,在半导体内产生热载流子且热载流子的温度高于晶格的温度,从而导致了光伏型光电探测器的电压输出信号随着辐照光功率密度的增加而下降直到零压输出的现象。对激光辐照下光伏型HgCdTe探测器的输出信号进行了模拟计算,结果表明,辐照光功率密度处于一定范围内探测器的输出信号随着辐照光功率密度的增加而逐步下降,甚至接近于零,与实验结果相符合。  相似文献   

16.
对激光辐照功率密度高于探测器饱和阈值而低于其破坏阈值(中等功率的激光)时光伏型光电探测器的软损伤进行了理论研究,提出了一种新机制。当激光辐照功率密度超过探测器的饱和阈值以后,载流子的带间跃迁达到深度饱和,在半导体内产生热载流子且热载流子的温度高于晶格的温度,从而导致了光伏型光电探测器的电压输出信号随着辐照光功率密度的增加而下降直到零压输出的现象。对激光辐照下光伏型HgCdTe探测器的输出信号进行了模拟计算,结果表明,辐照光功率密度处于一定范围内探测器的输出信号随着辐照光功率密度的增加而逐步下降,甚至接近于零,与实验结果相符合。  相似文献   

17.
浅海脉冲声传播及信道匹配实验研究   总被引:1,自引:1,他引:0  
进行了浅海声信道中低频脉冲压缩和信道匹配的理论和实验研究。实验中通过脉冲压缩,实现了超过110 km的高信噪比信号接收,信噪比时间增益与理论分析结果一致;信道实测时间相关半径超过了500 s;信道匹配处理提高了实验脉冲信号检测信噪比(信道匹配增益),基本消除了多途对脉冲信号检测信噪比的影响,且信道匹配增益可以进行理论预报。实验表明,脉冲压缩可有效增加浅海低频声脉冲的传输距离,信道匹配可用于消除多途对脉冲信号检测信噪比的影响。  相似文献   

18.
In 1959, Lawson and co-workers publication triggered development of variable band gap Hg1?xCdxTe (HgCdTe) alloys providing an unprecedented degree of freedom in infrared detector design. Over the five decades, this material system has successfully fought off major challenges from different material systems, but despite that it has more competitors today than ever before. It is interesting however, that none of these competitors can compete in terms of fundamental properties. They may promise to be more manufacturable, but never to provide higher performance or, with the exception of thermal detectors, to operate at higher temperatures. In the last two decades a several new concepts of photodetectors to improve their performance have been proposed including trapping detectors, barrier detectors, unipolar barrier photodiodes, and multistage detectors. This paper describes the present status of infrared barrier detectors. It is especially addressed to the group of III-V compounds including type-II superlattice materials, although HgCdTe barrier detectors are also included. It seems to be clear that certain of these solutions have merged as a real competitions of HgCdTe photodetectors.  相似文献   

19.
In order to achieve a high resolution in the spectroscopy of low energy X-rays, detectors based on superconducting tunnel junctions as sensors are presently investigated. The knowledge of the processes affecting the signal generation in such sensors is essential for the interpretation of the detector response. Starting from a diffusion model including decay and tunneling of excess quasiparticles in the metal layers of a superconducting tunnel junction detector, the detector response is determined as a function of absorption position and of rate constants. Model predictions agree very well with experimental data. The advantages of a detector employing quasiparticle trapping are pointed out and the parameters determining the signal gain are deduced. The linearity of the detector signal is much more affected by pair recombination of the quasiparticles during their tunneling rather than during their diffusive propagation into the tunneling region.  相似文献   

20.
席发元  宋凤军 《强激光与粒子束》2018,30(3):036005-1-036005-5
实验制备了单层和叠层(双层)碲锌镉探测器,并利用241Am@59.54 keV和57Co@122 keV γ射线源测试了其γ能谱特性。相比单层探测器,对于较高能量的57Co@122 keV γ射线,叠层碲锌镉探测器表现出较高的探测效率和光峰值效率,较好地改善了康普顿连续统一体,表现出与整块等厚度碲锌镉探测器类似的性能;但光生载流子收集效率变差,能谱峰位向低道区偏移;能量分辨率未得到改善。实验初步表明,通过叠加方法制备叠层碲锌镉探测器是可行的,并可推断制备更大厚度的叠层探测器将有利于中高能γ射线能谱测量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号