首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six novel inorganic-organic coordination supramolecular networks based on a versatile linking unit 4-pyridylthioacetate (pyta) and inorganic Co(II), Cu(II), Ag(I), Zn(II), Mn(II) and Pb(II) salts have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of CoCl(2).6H(2)O with Hpyta afforded a neutral mononuclear complex [Co(pyta)(2)(H(2)O)(4)](1), which exhibits a two-dimensional (2-D) layered architecture through intermolecular O-HO interactions. Reaction of CuCl(2.2H(2)O with Hpyta yielded a neutral one-dimensional (1-D) coordination polymer [[Cu(pyta)(2)(H(2)O].0.5H(2)O](n)(2) consisting of rectangle molecular square units, which show a three-dimensional (3-D) supramolecular network through S...S and O-H...O weak interactions. However, when AgNO(3), Zn(OAc)(2).2H(2)O or MnCl(2).4H(2)O salts were used in the above self-assembled processes, the neutral 2-D coordination polymers [Ag(pyta)](n)(3), [[Zn(pyta)(2)].4H(2)O](n)(4) or [[Mn(pyta)(2)(H(2)O)]](n)(5) with different topologies were obtained, respectively. While substituting the transition metal ions used in 1-5 with Pb(OAc)(2).3H(2)O, a one-dimensional coordination polymer [Pb(pyta)(2)](n)(6), which shows a novel 2-fold interpenetrating 2-D supramolecular architecture through weak SS interactions, was isolated. It is interesting to note that the building block pyta anion exhibits different configurations and coordination modes in the solid structures of complexes 1-6. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal centers, play a critical role in construction of these novel coordination polymers or supramolecules. The spectral and thermal properties of these new materials have also been investigated.  相似文献   

2.
The reaction of Zn(NO3)2.6H2O or Cu(NO3)2.3H2O with the star-shaped ligand 2,4,6-tris(di-2-picolylamino)[1,3,5]triazine (dipicatriz) in acetonitrile results in the formation of the mono- or trinuclear coordination compounds [Zn(dipicatriz)(NO3)2] (1), [Zn3(dipicatriz)(NO3)6](CH3CN)3 (2), and [Cu3(dipicatriz)(NO3)2(H2O)6](NO3)4 (3), depending on the metal-to-ligand ratios used during the crystallization process. Their crystal structures exhibit unique supramolecular interactions. Compounds 1 and 2 show anion-pi interactions between coordinated nitrate ions and the s-triazine ring. Compound 3 exhibits remarkable interactions between two noncoordinated nitrate anions and the two faces of the electron-deficient heteroaromatic ring, corroborating earlier theoretical investigations in this area. New theoretical investigations have been carried out on nitrate-pi interactions, taking into account the particular position of the anion toward the aromatic ring observed in the crystal structures.  相似文献   

3.
Two series of zinc triad complexes containing the ligand 2,6-bis(methylthiomethyl)pyridine (L1) were synthesized and characterized by X-ray crystallography and solution-state 1H NMR spectroscopy. The distorted meridional octahedral M(L1)2(ClO4)2 series includes the first structurally characterized Zn(II) and Cd(II) complexes with N2(SR2)4 coordination spheres. Coordination of HgCl2 and ZnCl2 with 1 equiv of ligand afforded mononuclear, five-coordinate species Hg(L1)Cl2 and Zn(L1)Cl2, respectively, with distorted square-pyramidal and trigonal-bipyramidal geometries. With CdCl2, the dimeric [Cd(L1)Cl(mu-Cl)]2 complex was obtained. The distorted octahedral coordination geometry of each Cd(II) center in this complex is formed by one tridentate ligand, two bridging chloride ions, and one terminal chloride ion. NMR spectra indicate that the intermolecular ligand-exchange rate of [M(L1)2](2+) decreased in the order Cd(II) > Zn(II) > Hg(II). Slow intermolecular ligand-exchange conditions on the chemical-shift time scale were found for 1:2 metal-to-ligand complexes of L(1) with Hg(II) and Zn(II) but not Cd(II). Slow intermolecular ligand-exchange conditions in acetonitrile-d(3) solutions permitting detection of (3-5)J(199Hg1H) were found for 1:1 and 1:2 Hg(ClO4)2/L1 complexes, but not for the related Cd(ClO4)2) complexes. The magnitudes of J(199Hg1H) for equivalent protons were smaller in [Hg(L1)2](2+) than in [Hg(L1)(NCCH3)x](2+). The relative intermolecular ligand-exchange rates of the zinc triad complexes investigated here suggest that the toxicity of Hg(II) is accentuated by the relative difficulty of displacing it from the coordination sites encountered.  相似文献   

4.
Two multidentate ditopic ligands L1 and L2 which contain both N-donor and crown ether units have been synthesised. The potentially octadentate ligand L1 forms a trinuclear heterometallic double helicate with Cu(I) and Zn(II) ([Zn2Cu(L1)2](5+)), whereas L2 forms a tetranuclear heterometallic double helicate with the same metal ions ([Zn2Cu2(L2)2](6+)). Both species have been characterised by (1)H NMR, ESI-MS and single crystal X-ray crystallography. Reaction of [Zn2Cu2(L2)2](6+) with Ba(2+) results in the coordination of the crown ether units giving the simple barium coordinated species [Zn2Cu2(L2)2Ba2](10+). However, reaction of [Zn2Cu(L1)2](5+) with Ba(2+) deprograms the ligand and results in the formation of a mixture of species.  相似文献   

5.
The complexation properties of the ligand bis(3,5-dimethylpyrazol-1-yl)methane (L) towards group 11 metals have been studied. The reaction in a 1 : 1 molar ratio with [Cu(NCMe)4]PF6 or Ag(OTf) complexes gives the mononuclear [CuL(NCMe)]PF6 (1), with crystallographic mirror symmetry, or dinuclear [Ag2(mu-L)2](OTf)2 (2) (OTf = trifluoromethanesulfonate) in which the ligand bridges both silver centres, an unprecedented mode of coordination for this type of ligands. Compound 2 crystallizes with two water molecules and forms a supramolecular structure through classical hydrogen bonding. The reaction in a 2 : 1 ratio affords in both cases the four-coordinated derivatives [ML2]X (M = Cu, X = PF6 (3); Ag, X = OTf 4). The treatment of [Ag(OTf)(PPh3)] with the ligand L gives [AgL(PPh3)]OTf (5). The gold(I) derivative [Au2(C6F5)2(mu-L)] (6) has also been obtained by reaction of L with two equivalents of [Au(C6F5)(tht)]. These complexes present a luminescent behaviour at low temperature; the emissions being mainly intraligand but enhanced after coordination of the metal. Compounds 1-4 have been characterized by X-ray crystallography. DFT studies showed that, in the silver complex 2, coordination of H2O to Ag in the binuclear complex is favoured by formation of a hydrogen-bonding network, involving the triflato anion, and releasing enough energy to allow distortion of the Ag2 framework.  相似文献   

6.
Three new one-dimensional coordination polymers [Zn8S(SC6H5)14.C12H10N2](1), [Zn7CoS(SC6H5)14.C13H14N2](2) and [Zn8S(SC6H5)14.C13H14N2](3) have been prepared containing penta-supertetrahedral clusters and linear crosslinking dipyridyl ligands; the two complexes show optical transitions with band gaps of approximately 3.44 eV (1) and approximately 3.54 eV (2).  相似文献   

7.
Herein we describe the importance of side chains in C3-symmetric ligands in supramolecular chemistry. The reaction of the new ligand tris(5-bromo-2-methoxybenzylidene)triaminoguanidinium chloride [H3Me3Br3L]Cl (1) with ZnCl2 results in the formation of the monomeric complex (Et3NH)2[(ZnCl2)3Me3Br3L] (2), in which the ligand remains in a conformation less favourable for the coordination of metal centres. The use of the related tris(5-bromo-2-hydroxybenzylidene)triaminoguanidinium chloride, [H6Br3L]Cl, under similar conditions, results in the formation of two different dimeric compounds (NH4)[{[Zn(NH3)]3Br3L}2{mu-(OH)}3]1/4MeOH (3) and [Zn{Zn2(OH2)3(NH3)Br3L}2] (4), depending on the solvent mixture used. The comparable reaction of the ligand tris(5-bromo-2-hydroxy-3-methoxybenzylidene)triaminoguanidinium chloride [H6(OMe)3Br3L]Cl (5), leads to the formation of a doughnut-shaped, protein-sized coordination oligomer (Et3NH)18[{Zn[Zn2Cl{(OMe)3Br3L}]2}6(mu-Cl)6(OH2)6]x CH3CN (6), which comprises six dimeric [Zn5{(OMe)3Br3L}2] units. Whereas 3 and 4 decompose in DMSO solution, 6 is surprisingly stable in the same solvent.  相似文献   

8.
QIN  Jian-Hua JU  Feng-Yang 《结构化学》2010,29(7):1108-1114
<正>Two new Co(Ⅱ)coordination polymers {[Co(Htbip)_2(H_2O)_4]·(H_2O)}_n 1 and {[Co_2(tbip)_2(bpa)_(1.5)](H_2tbip)}_n 2(H_2tbip=5-tert-butyl isophthalic acid,bpa=1,2-dis(4-pyridyl) ethane)have been synthesized under hydrothermal conditions and characterized by elemental analysis,IR spectroscopy and X-ray diffraction.Compound 1 exhibits a water-bridged 1-D linear chain which is extended by hydrogen bonds into a 3D supramolecular network,while compound 2 has a dinuclear unit extended by bpa ligand to form a 2-D layer.  相似文献   

9.
Seven new silver(I) complexes of the formula [Ag2(L)2(CF3SO3)2] (1), [Ag2(L)2(CH3SO3)2] (2) [Ag2(L)2](BF4)2 (3), [Ag3(L)2(NO3)2]NO3.5H2O (4), [Ag2(L)(NO3)2].CH3OH (5), [Ag2(L)2](ClO4)2 (6) and [Ag3(L)2(CH3CN)3](ClO4)3 (7) have been synthesized by reactions of 1,3,5-tris(2-oxazolinyl)benzene (L) with varied silver(I) salts under different conditions. The influences of counter anions and reaction conditions on the structure of the complexes are discussed. Three complexes , 1, 2 and 3 with two kinds of different 1D chain structures were obtained under the same synthetic conditions by using different silver(I) salts, and the ligand L was found to adopt bis-monodentate (1 and 2) and tris-monodentate (3) coordination modes respectively. On the other hand, by using the same silver(I) nitrate or silver(I) perchlorate but different reaction solvents, 4 and 5 or 6 and 7 were isolated respectively. Complexes 4and 5 have different 1D chain structures, and 6 is isostructural with . However, 7 is a tri-nuclear, propeller-shaped M3L2 supramolecular capsule in which L adopts a cis,cis,cis-conformation, while the ligand L in 3-6 has cis,trans,trans-conformation. The results revealed that the nature of the counter anions, such as their size, coordination ability and coordination mode, and the reaction conditions all have great impact on the structure of the complexes. The complexes were also characterized by electrospray mass spectrometry. Furthermore, complex 7 exhibited modest second-harmonic-generation (SHG) efficiency.  相似文献   

10.
The new macrocyclic ligand 1,9(4,7)-diphenanthroline-3,7,11,15-tetraazacyclohexadecaphane (L) was synthesized by a 2?:?2 reaction of 1,10-phenanthroline-4,7-dialdehyde with 1,3-diaminopropane, followed by reduction with NaBH(4). L contains two phenanthroline groups linked together by two 1,3-diaminopropane chains in such a way that the heteroaromatic nitrogen atoms point outside the ligand cavity. The ligand structure defines two pairs of identical compartments displaying a specific ability in the binding of protons (1,3-diaminopropane) and metal ions (phenanthroline). Protonation and Zn(II) coordination were studied by means of potentiometric and spectroscopic ((1)H NMR, UV-vis, fluorescence) techniques. Both protonation and Zn(II) coordination consistently affect the fluorescence emission properties of L, giving rise to enhancement or quenching of the emission, depending on the species involved. L becomes emissive upon protonation, but the formation of the highly protonated species, in particular the fully protonated [H(6)L](6+), quenches the emission. The mono- and dinuclear Zn(II) complexes of the unprotonated ligand are non-emissive, like free L, while Zn(II) binding to [HL](+) activates the emission. The most interesting aspect, however, is the chelation enhancement of quenching (CHEQ) observed upon Zn(II) binding to [H(2)L](2+) and [H(4)L](4+), being among the few examples of CHEQ effect observed for Zn(II) complexes. Hydrogen bonding between a metal coordinated water molecule and a phenanthroline group seems to be responsible for the CHEQ observed for [ZnH(2)L](4+).  相似文献   

11.
Utilizing 3,5-bis(x-pyridyl)-1,2,4-triazole (x-Hpytz, x = 3; x = 4) as multidentate ligands, six novel coordination polymers with Zn(II) or Cd(II) metal ions were prepared: [Zn(3-pytz)(0.5)(OH)(0.5)Cl](n) (1, 1D ladder), {[Zn(3-Hpytz)(H(2)O)(4)] [Zn(3-Hpytz)(H(2)O)(3)·SO(4)]SO(4)·5H(2)O}(n) (2·5H(2)O, 1D chain), [Cd(3-Hpytz)(SO(4))](n) (3, 3D framework), {[Cd(3-Hyptz)SO(4)·3H(2)O]·2H(2)O}(n) (4·2H(2)O, 1D chain), [Zn(4-pytz)Cl](n) (5, 3D framework) and [Zn(2)(4-pytz)(SO(4))(OH)](n) (6, 3D framework). All compounds were obtained from hydrothermal reactions, with the exception of compound 4 which was obtained by solvent diffusion at room temperature. All compounds were characterized by FTIR, elemental analysis and TGA analysis and their structures were determined by X-ray diffraction. All compounds exhibited substantial thermal stability and showed photofluorescent properties that resulted from ligand π-π* transition.  相似文献   

12.
[Zn(o-bda)(phen)(H2O)]n·nH2O (C22H20N2O6Zn) (1) [where o-bda is o-phenylenediacetic acid dianion and phen is 1,10-phenanthroline] crystallizes in triclinic system, space group P1 with a=0.826 5(4) nm, b=1.042 4(5) nm, c=1.238 1(6) nm, α=76.987(9)°, β=70.987(9)°, γ=78.281(8)°, V=0.9728(8) nm3, Z=2, Dc=1.617 g·cm-3, μ=1.308 mm-1 and F(000)=488. Zn(Ⅱ) ion has a distorted trigonal bipyramid coordination geometry formed by two carboxyl O atoms from two different o-bda groups, two N atoms from the phen ligand and one terminal water molecule. Adjacent Zn(Ⅱ) ions are interlinked by o-bda groups into a infinite zigzag chain structure with a Zn…Zn distance of 0.825 6(4) nm. The adjacent zigzag chains may also be paired under direction of supramolecular recognition and attraction through both π-π stacking and hydrogen bonding interactions into molecular zippers, which further interlinked into a three-dimensional supramolecular network by these noncovalent interactions. CCDC: 600935.  相似文献   

13.
4-甲基-6-羟基嘧啶与硝酸钴在乙醇溶液中反应,制得氢键连接的超分子配合物[Co(C~5H~6N~2O)~2(H~2O)~4]·(NO~3)~2。该化合物的结构已测定,晶体属于单斜晶系,空间群为C2/m,晶胞参数a=1.9853(4)nm,b=0.7601(5)nm,c=0.6539(13)nm,β=100.93(3)°,Z=2,最终偏离因子R=0.053。每一个结构单元中Co原子与两个4-甲基-6-羟基嘧啶和四个水分子配位,配位的水又通过氢键与硝酸根结合,同时嘧啶环上的羟基又与相邻结构单元中的嘧啶环上的未配位的N形成氢键,因而就形成了二维网状的超分子化合物。我们采用PM3半经验法计算表明配体4-甲基-6-羟基嘧啶中两个N原子的净电荷分布不同,因而配位能力不同,只有处在羟基邻位的N原子参与了配位。  相似文献   

14.
The new diphosphine ligands Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OC(O)C(6)H(4)PPh(2) (1: X=NH; 2: X=NPh; 3: X=O) and Ph(2)PC(6)H(4)C(O)O(CH(2))(2)O(CH(2))(2)OC(O)C(6)H(4)PPh(2) (5) as well as the monophosphine ligand Ph(2)PC(6)H(4)C(O)X(CH(2))(2)OH (4) have been prepared from 2-diphenylphosphinobenzoic acid and the corresponding amino alcohols or diols. Coordination of the diphosphine ligands to rhodium, iridium, and platinum resulted in the formation of the square-planar complexes [(Pbond;P)Rh(CO)Cl] (6: Pbond;P=1; 7: Pbond;P=2; 8: Pbond;P=3), [(Pbond;P)Rh(CO)Cl](2) (9: Pbond;P=5), [(P-P)Ir(cod)Cl] (10: Pbond;P=1; 11: Pbond;P=2; 12: Pbond;P=3), [(Pbond;P)Ir(CO)Cl] (13: Pbond;P=1; 14: Pbond;P=2; 15: Pbond;P=3), and [(Pbond;P)PtI(2)] (18: Pbond;P=2). In all complexes, the diphosphine ligands are trans coordinated to the metal center, thanks to the large spacer groups, which allow the two phosphorus atoms to occupy opposite positions in the square-planar coordination geometry. The trans coordination is demonstrated unambiguously by the single-crystal X-ray structure analysis of complex 18. In the case of the diphosphine ligand 5, the spacer group is so large that dinuclear complexes with ligand 5 in bridging positions are formed, maintaining the trans coordination of the P atoms on each metal center, as shown by the crystal structure analysis of 9. The monophosphine ligand 4 reacts with [[Ir(cod)Cl](2)] (cod=cyclooctadiene) to give the simple derivative [(4)Ir(cod)Cl] (16) which is converted into the carbonyl complex [(4)Ir(CO)(2)Cl] (17) with carbon monoxide. The crystal structure analysis of 16 also reveals a square-planar coordination geometry in which the phosphine ligand occupies a position cis with respect to the chloro ligand. The diphosphine ligands 1, 2, 3, and 5 have been tested as cocatalysts in combination with the catalyst precursors [[Rh(CO)(2)Cl](2)] and [[Ir(cod)Cl](2)] or [H(2)IrCl(6)] for the carbonylation of methanol at 170 degrees C and 22 bar CO. The best results (TON 800 after 15 min) are obtained for the combination 2/[[Rh(CO)(2)Cl](2)]. After the catalytic reaction, complex 7 is identified in the reaction mixture and can be isolated; it is active for further runs without loss of catalytic activity.  相似文献   

15.
Under hydrothermal (solvothermal) reaction conditions chiral compounds 1, 2, and 3 and one acentric compound 4 were obtained by the reaction of Zn(2+) or Cd(2+) with racemic 3-(3-pyridyl)-3-aminopropionic acid (rac-HPAPA). Compounds 1 and 2 crystallized in chiral space group P2(1)2(1)2(1). At 105 degrees C, racemic 3-pyridyl-3-aminopropionic acid (rac-HPAPA) reacted with Zn(ClO4)(2).6 H2O and dehydrogenated in situ to form the first chiral coordination polymer [Zn[(E)-3-C(5)H4N-C(NH2)=CH-COO]]ClO4 (1) with a beta-dehydroamino acid. Beyond 120 degrees C, the reaction of rac-HPAPA with Zn(ClO4)(2).6 H2O deaminates in situ to form chiral coordination polymer [Zn[(E)-3-C5H4N-CH=CH-COO](OH)] (2). At relatively low temperatures (70 degrees C), the solvothermal reaction of Zn(NO3)(2).6 H2O with rac-HPAPA in methanol does not lead to any change in the ligand and results in the formation of a chiral (P2(1)2(1)2(1)) coordination polymer [Zn(papa)(NO3)] (3). The same reaction of Cd(ClO4)(2).6 H2O with HPAPA also does not lead to any change in ligand and results in the formation of noncentric (Cc) coordination polymer [Cd(papa)(Hpapa)]ClO4.H2O (4). The network topology of both 1 and 3 is 10,3a, while 2 has a diamondoid-like (KDP-like, KDP=potassium dideuterophosphate) network. Particularly interesting from a topological perspective is that 4 has an unprecedented three-dimensional network. Compounds 1, 2, 3, and 4 are all second harmonic generation (SHG) active with 1 exhibiting the strongest response, while only 4 also displays good ferroelectric properties.  相似文献   

16.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

17.
Reger DL  Watson RP  Smith MD 《Inorganic chemistry》2006,45(25):10077-10087
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene, (m-[CH(pz)2]2C6H4, Lm), p-bis[bis(1-pyrazolyl)methyl]benzene, (p-[CH(pz)2]2C6H4, Lp), and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with AgX salts (pz = 1-pyrazolyl; X = BF4- or PF6-) yield two types of molecular motifs depending on the arrangement of the ligating sites about the central arene ring. Reactions of the m-phenylene-linked Lm with AgBF4 and AgPF6 afford complexes consisting of discrete, metallacyclic dications: [Ag2(mu-Lm)2](BF4)2 (1) and [Ag2(mu-Lm)2](PF6)2 (2). When the p-phenylene-linked Lp is treated with AgBF4 and AgPF6, acyclic, cationic coordination polymers are obtained: {[Ag(mu-Lp)]BF4}infinity (3) and {[Ag(mu-Lp)]PF6}infinity (4). Reaction of the ligand L3, containing three bis(pyrazolyl)methane units in a meta arrangement, with an equimolar amount of AgBF4 again yields discrete metallacyclic dications in which one bis(pyrazolyl)methane unit on each ligand remains unbound: [Ag2(mu-L3)2](BF4)2 (5). Treatment of L3 with an excess of AgBF4 affords a polymer of metallacycles, {[Ag3(mu-L3)2](BF4)3}infinity (6), with one of the bis(pyrazolyl)methane units on each ligand bound to a silver cation bridging two metallacycles. The supramolecular structures of the silver(I) complexes 1-6 are organized by noncovalent interactions, including weak hydrogen bonding, pi-pi, and anion-pi interactions.  相似文献   

18.
通过吡啶酰胺类配体3,5-二(4-吡啶酰胺基)吡啶(4-DPBA)与相应金属盐反应,合成了3个配位聚合物{[Zn(4-DPBA)2(NO3)2].4DMF}n(1),{[Cd(4-DPBA)2(NO3)2].4DMF}n(2)和{[Cu(4-DPBA)2(DMF)2](ClO4)2.7DMF.2H2O}n(3),并用红外光谱、元素分析、粉末及单晶X-射线衍射等方法对其进行了表征。结果表明配合物1和2是同构的,由平行的一维带状链通过氢键连接而成二维层状结构,而配合物3是由3种不同取向的一维带状链构成二维多层结构。这3个配合物最终均通过氢键连接形成三维超分子结构。研究了配合物1和2的荧光性质。  相似文献   

19.
Reactions of the arene-linked bis(pyrazolyl)methane ligands m-bis[bis(1-pyrazolyl)methyl]benzene (m-[CH(pz)2]2C6H4, Lm) and 1,3,5-tris[bis(1-pyrazolyl)methyl]benzene (1,3,5-[CH(pz)2]3C6H3, L3) with BF4- salts of divalent iron, zinc, and cadmium result in fluoride abstraction from BF4- and formation of fluoride-bridged metallacyclic complexes. Treatment of Fe(BF4)2.6H2O and Zn(BF4)2.5H2O with Lm leads to the complexes [Fe2(mu-F)(mu-Lm)2](BF4)3 (1) and [Zn2(mu-F)(mu-Lm)2](BF4)3 (2), in which a single fluoride ligand and two Lm molecules bridge the two metal centers. The reaction of [Cd2(thf)5](BF4)4 with Lm results in the complex [Cd2(mu-F)2(mu-Lm)2](BF4)2 (3), which contains dimeric cations in which two fluoride and two Lm ligands bridge the cadmium centers. Equimolar amounts of the tritopic ligand L3 and Zn(BF4)2.5H2O react to give the related monofluoride-bridged complex [Zn2(mu-F)(mu-L3)2](BF4)3 (4), in which one bis(pyrazolyl)methane unit on each ligand remains unbound. NMR spectroscopic studies show that in acetonitrile the zinc metallacycles observed in the solid-state remain intact in solution.  相似文献   

20.
Five new coordination polymers Cu(phen)(H2O)(phth)·CH3OH(1), [Cu(2,2'-bipy)(H2O)](phth)·3.5H2O(2), Zn(phen)(phth)(H2O)·1.125H2O(3) and [M(4,4'-bipy)(H2O)2](phth)·2H2O[M=Zn(4), Mn(5)](H2phth=phthalic acid, bipy=bipyridine, phen=1,10-phenanthroline) have been synthesized from the amino acid derivatives(phthalyl-l- valine, H2L) and structurally characterized. H2L was hydrolyzed into phth2– group during the reaction, but the strucure feature was different from that of the complex directly synthesized from H2phth in the reported literature, revealing that H2L played an important role in composing the novel compounds. Compounds 1, 2 and 3 are all 1D chains, but the differences are that compound 1 is further hydrogen-bonded into 2D networks, and compound 2 is further extended into 3D supramolecular network through π-π stacking and hydrogen-bonding interactions. However, compound 3 is a 1D helix chain structure and further links into 2D networks through π-π stacking. Compounds 4 and 5 are isostructural and exhibit the same 2D layers, which are further connected by hydrogen-bonding interactions to form 3D supramolecular network. Antiferromagnetic superexchange was observed for compounds 1, 2 and 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号