首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembled InAs quantum dots (QDs) on In0.52Al0.48As layer lattice matched to (1 0 0) InP substrates have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). TEM observations indicate that defect-free InAs QDs can be grown to obtain emissions over the technologically important 1.3–1.55 μm region. The PL peak positions for the QDs shift to low energy as the InAs coverage increases, corresponding to increase in QD size. The room temperature PL peak at 1.58 μm was observed from defect-free InAs QDs with average dot height of 3.6 nm.  相似文献   

2.
The growth of a three-dimensional (3D) InAs quantum dot (QD) crystal on a patterned GaAs (0 0 1) substrate is demonstrated. The morphology of QDs grown on a surface patterned with shallow holes is studied as a function of the amount of deposited InAs. We observe that the QDs form in the patterned holes close to each other forming lateral QD bimolecules for InAs coverages below the commonly observed critical thickness of 1.6 monolayers. When the coverage increases, the QD bimolecules coalesce to form larger single QDs. The QDs in the holes are then capped with a Ga(Al)As spacer. The buried QD array serves as a strain template for controlling the formation site of the QDs in the second layer. By tuning the growth conditions for the second and subsequent layers, we achieve a 3D InAs QD crystal with a high degree of perfection. A detail investigation of the growth on hole patterns with different periodicities is presented.  相似文献   

3.
InAs quantum dots (QDs) were grown on InP substrates by metalorganic chemical vapor deposition. The width and height of the dots were 50 and 5.8 nm, respectively on the average and an areal density of 3.0×1010 cm−2 was observed by atomic force microscopy before the capping process. The influences of GaAs, In0.53Ga0.47As, and InP capping layers (5–10 ML thickness) on the InAs/InP QDs were studied. Insertion of a thin GaAs capping layer on the QDs led to a blue shift of up to 146 meV of the photoluminescence (PL) peak and an InGaAs capping layer on the QDs led to a red shift of 64 meV relative to the case when a conventional InP capping layer was used. We were able to tune the emission wavelength of the InAs QDs from 1.43 to 1.89 μm by using the GaAs and InGaAs capping layers. In addition, the full-width at half-maximum of the PL peak decreased from 79 to 26 meV by inserting a 7.5 ML GaAs layer. It is believed that this technique is useful in tailoring the optical properties of the InAs QDs at mid-infrared regime.  相似文献   

4.
Native oxide removal on GaAs(0 0 1) wafers under conventional thermal desorption causes severe surface degradation in the form of pitting. Typical surface regeneration requires several hundred nanometres of buffer layer growth. This level of planarization is necessary to fill in the deep pits since Ehrlich-Schwoebel diffusion barriers cause a retardation of layer growth at multiple monolayer step edges. Pits are, however, attractive nucleation sites for quantum dots (QDs), and hence QDs fill the pits via a self-governing phenomenon. In this paper, we show how 1.7 ML of InAs growth on GaAs(0 0 1) immediately after thermal oxide removal aids the healing of the surface and reduces the necessity for thick buffer layer growth.  相似文献   

5.
The influence of GaAs(1 0 0) 2° substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality.  相似文献   

6.
We report on the morphology and properties of the surface formed by molecular-beam epitaxy on shallow mesa gratings on patterned GaAs(3 1 1)A and GaAs(1 0 0). On GaAs(3 1 1)A substrates, the corrugated surface formed after GaAs growth on shallow mesa gratings along is composed of monolayer high steps and (3 1 1)A terraces. These pattern induced steps which are different on opposite slopes play an important role in InAs growth on this novel template leading to distinct lateral modulation of the island distribution. On GaAs(1 0 0) substrates, growth on shallow mesa gratings along [0 1 1], [0 1 0] and is drastically sensitive to the pattern direction due to the difference of steps along [0 1 1] and .  相似文献   

7.
The 6-period stacked layers of self-assembled InAs quasi-quantum wires(qQWRs) and quantum dots(QDs) embedded into InAlAs on InP(001) substrates have been prepared by solid molecular beam epitaxy. The structures are characterized by atomic force microscopy(AFM) and transmission electron microscopy(TEM). From AFM we have observed for the first time that InAs qQWRs and QDs coexist, and we explained this phenomenon from the view of the energy related to the islands. Cross-sectional TEM shows that InAs qQWRs are vertically aligned every other layer along the growth direction [001], which disagrees with conventional vertical self-alignment of InAs QDs on GaAs substrate.  相似文献   

8.
Formation of self-assembled InAs 3D islands on GaAs (1 1 0) substrate by metal organic vapor phase epitaxy has been investigated. Relatively uniform InAs islands with an average areal density of 109 cm−2are formed at 400 ° C using a thin InGaAs strain reducing (SR) layer. No island formation is observed without the SR layer. Island growth on GaAs (1 1 0) is found to require a significantly lower growth temperature compared to the more conventional growth on GaAs (1 0 0) substrates. In addition, the island height is observed to depend only weakly on the growth temperature and to be almost independent of the V/III ratio and growth rate. Low-temperature photoluminescence at 1.22 eV is obtained from the overgrown islands.  相似文献   

9.
We studied the growth of InAs quantum dots on InP (0 0 1) substrates in a low-pressure metalorganic chemical vapor deposition by using a so-called InP ‘double-cap’ procedure. With double-capping, a photoluminescence spectrum is modified into a series of multiple peaks, where the emission peaks arise from several quantum dot families with different heights changing in a step of integer number of an InAs monolayer. Cross-sectional transmission electron micrograph observations revealed that the shape of double-capped dots is dramatically changed into a thin plate-like shape with extremely flat upper and lower interfaces, being consistent with our interpretation of the photoluminescence spectrum. We showed that the procedure was extremely useful for controlling the emission wavelength from quantum dots in an InAs/InP (0 0 1) system.  相似文献   

10.
Self-assembled InAs quantum dots (QDs) with high-density were grown on GaAs(0 0 1) substrates by antimony (Sb)-mediated molecular beam epitaxy technique using GaAsSb/GaAs buffer layer and InAsSb wetting layer (WL). In this Sb-mediated growth, many two-dimensional (2D) small islands were formed on those WL surfaces. These 2D islands provide high step density and suppress surface migration. As the results, high-density InAs QDs were achieved, and photoluminescence (PL) intensity increased. Furthermore, by introducing GaAsSb capping layer (CL), higher PL intensity at room temperature was obtained as compared with that InGaAs CL.  相似文献   

11.
We present a method to control the nucleation sites of InAs self-assembled quantum dots (QDs). Tensile-strained material, such as GaAs used here, was grown on InP substrates before InAs deposition. This thin GaAs layer can provide a surface with grid-pattern trenches which have the same function as atomic-steps and are promising for the formation of QDs with controlled nucleation sites. Atom force microscopy (AFM) measurement was performed and the AFM images indicate that the InAs islands grown with our technique are grid-pattern aligned and have good homogeneity and low size fluctuation. In addition, another kind of three-dimensional structure with larger size would coexist with normal QDs if a 30nm thick GaAs layer was deposited. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
M.C. Xu  Y. Temko  T. Suzuki  K. Jacobi   《Surface science》2005,580(1-3):30-38
The evolution of two-dimensional (2D) strained InAs wetting layers on GaAs(0 0 1), grown at different temperatures by molecular beam epitaxy, was studied by in situ high-resolution scanning tunneling microscopy. At low growth temperature (400 °C), the substrate exhibits a well-defined GaAs(0 0 1)-c(4 × 4) structure. For a disorientation of 0.7°, InAs grows in the step-flow mode and forms an unalloyed wetting layer mainly along steps, but also in part on the terrace. The wetting layer displays some local c(4 × 6) reconstruction, for which a model is proposed. 1.2 monolayer (ML) InAs deposition induces the formation of 3D islands. At a higher temperature (460 °C), the wetting layer is obviously alloyed even at low InAs coverage. The critical thickness of the wetting layer for the 2D-to-3D transition is shifted to 1.50 ML in this case presumably since the strain is reduced by alloying.  相似文献   

13.
This study describes the origin of the size and shape anisotropy of InAs/InP(0 0 1) quantum dots (QDs) grown by metalorganic vapor phase epitaxy (MOVPE). The geometry of the QDs is determined by carefully analyzing transmission electron microscopy (TEM) images. An analytical model adapted to our QD geometry is used to understand the formation mechanism of the QDs, and to describe the origin of their size dispersion. A shape transition from QDs to elongated quantum sticks (QS) is observed under As-poor growth conditions. This transition, driven by thermodynamics, is clearly described by our model.  相似文献   

14.
GaAsSb strain-reducing layers (SRLs) are applied to cover InAs quantum dots (QDs) grown on GaAs substrates. The compressive strain induced in InAs QDs is reduced due to the tensile strain induced by the GaAsSb SRL, resulting in a redshift of photoluminescence (PL) peaks of the InAs QDs. A strong PL signal around a wavelength of 1.3 μm was observed even at room temperature. A laser diode containing InAs QDs with GaAsSb SRLs in the active region was fabricated, which exhibits laser oscillation in pulsed operation at room temperature. These results indicate that GaAsSb SRLs have a high potential for fabricating high efficient InAs QDs laser diodes operating at long-wavelength regimes.  相似文献   

15.
A novel method for positioning of InAs islands on GaAs (1 1 0) by cleaved edge overgrowth is reported. The first growth sample contains strained InxGa1−xAs/GaAs superlattice (SL) of varying indium fraction, which acts as a strain nanopattern for the cleaved-edge overgrowth. Atoms incident on the cleaved edge will preferentially migrate to InGaAs regions where favorable bonding sites are available. By this method InAs island chains with lateral periodicity defined by the thickness of InGaAs and GaAs of SL have been realized by molecular beam epitaxy (MBE). They are observed by means of atomic force microscopy (AFM). The strain nanopattern's effect is studied by the different indium fraction of SL and MBE growth conditions.  相似文献   

16.
Thin InAs epilayers were grown on GaAs(1 0 0) substrates exactly oriented and misoriented toward [1 1 1]A direction by atmospheric pressure metalorganic vapor phase epitaxy. InAs growth was monitored by in situ spectral reflectivity. Structural quality of InAs layers were studied by using high-resolution X-ray diffraction. No crystallographic tilting of the layers with respect to any kind of these substrates was found for all thicknesses. This result is discussed in terms of In-rich growth environment. InAs layers grown on 2° misoriented substrate provide an improved crystalline quality. Surface roughness of InAs layers depend on layer thickness and substrate misorientation.  相似文献   

17.
Raman spectra of InAs quantum dots (QDs) on InP substrate were investigated. Both longitudinal-optic (LO) and transverse-optic (TO) frequency of InAs QDs showed a large blue-shift comparing to its bulk due to the compressive strain in InAs QDs. Raman scattering of InAs QDs with a thin GaAs interlayer was studied. We obtained that the peak position of LO and TO mode of InAs QDs became larger blue-shifted when we inserted the GaAs layer. At the same time, we found a red-shift of the frequency of GaAs LO mode because of tensile strain. Theoretical calculation was performed and its prediction coincided with our experiment results well. They both showed that strain played an important role in formation of InAs QDs.  相似文献   

18.
张伟  石震武  霍大云  郭小祥  彭长四 《物理学报》2016,65(11):117801-117801
在InAs/GaAs(001)量子点生长过程中, 当InAs沉积量为0.9 ML时, 利用紫外纳秒脉冲激光辐照浸润层表面, 由于高温下In原子的不稳定性, 激光诱导的原子脱附效应被放大, 样品表面出现了原子层移除和纳米孔. 原子力显微镜测试表明纳米孔呈现以[110]方向为长轴(尺寸: 20-50 nm)、[110]方向为短轴(尺寸: 15-40 nm)的表面椭圆开口形状, 孔的深度为0.5-3 nm. 纳米孔的密度与脉冲激光的能量密度正相关. 脉冲激光的辐照对量子点生长产生了显著的影响: 一方面由于纳米孔的表面自由能低, 沉积的InAs优先迁移到孔内, 纳米孔成为量子点优先成核的位置; 另一方面, 孔外的区域因为In原子的脱附, 量子点的成核被抑制. 由于带有纳米孔的浸润层表面具有类似于传统微纳加工技术制备的图形衬底对量子点选择性生长的功能, 该研究为量子点的可控生长提供了一种新的思路.  相似文献   

19.
InGaAsSb strain-reducing layers (SRLs) are applied to cover InAs quantum dots (QDs) grown on GaAs substrates. The compressive strain induced in InAs QDs from the GaAs is reduced due to the tensile strain induced by the InGaAsSb SRL, because the lattice constant of InGaAsSb is closer to InAs lattice constant than that of GaAs, resulting in a significant red shift of photoluminescence peaks of the InAs QDs. The emission wavelength from InAs QDs can be controlled by changing the Sb composition of the InGaAsSb SRL. The 1.5 μm band emissions were achieved in the sample with an InGaAsSb SRL whose Sb compositions were above 0.3. The calculation of the electron and the hole wave functions using the transfer matrix method indicates that the electron and the hole were localized around InAs QDs and InGaAsSb SRL.  相似文献   

20.
We have studied quantum dots (QDs) fabricated by activated spinodal decomposition (ASD) of an InGa(Al)As alloy deposited on top of self-organized InAs nanoscale stressors on GaAs substrate. Such a growth sequence results in a strong red shift of the PL emission down to 1.3 μm at 300 K. This red shift is caused by the formation of In-rich areas in the vicinity of the InAs islands, which increase the effective dot size. Beyond a certain critical InAs composition or nominal thickness of the InGa(Al)As layer the PL line shifts back towards higher energies. Adding Al to the alloy increases the red shift for a given In concentration. Room temperature lasing near 1.3 μm with threshold current densities of about 85 A/cm2 was achieved for lasers based on three-fold stacked ASD-formed QDs, with a maximum cw output power of 2.7 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号