首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We examined polymers of sodium 11-acrylamidoundecanoate [poly(Na 11-AAU)] with a very high molecular mass (>10(6)) for their potential use as a pseudo-stationary phase in micellar electrokinetic capillary chromatography (MEKC). Size-exclusion chromatography and capillary electrophoresis studies reveal that the polymers are highly charged, and have a densely packed chain structure. For aromatic compounds, the polymeric surfactant showed significantly different selectivity than sodium dodecyl sulfate (SDS). It was suggested that one molecule of poly(Na 11-AAU) forms one micelle. The structural stability of this pseudo-stationary phase permitted its use with relatively high percentages of organic modifiers in the buffer medium, allowing the separation of highly hydrophobic compounds which are difficult to analyze by conventional MEKC with SDS.  相似文献   

2.
Fujimoto C 《Electrophoresis》2001,22(7):1322-1329
Polymerized sodium 11-acrylamidoundecanoate (poly(Na 11-AAU)) was used as a pseudostationary phase (PSP) for micellar electrokinetic chromatography to separate uncharged compounds. The polymer PSP showed signifcantly different solute migration behaviors from conventional micelles including sodium dodecyl sulfate and poly (sodium 10-undecylenate), giving high separation efficiencies (>200000 theoretical plates/m). Linear solvation energy relationships were used to evaluate and characterize the chemical interactions that influence the retention behavior in the poly (Na 11-AAU) micellar system. It was found that the solute volume and solute hydrogen bond basicity mainly influenced the retention. The characteristic feature of the poly (Na 11-AAU) micellar system is that the micelle has a significantly higher capacity for dipole-dipole and dipole-induced dipole interactions as well as a slightly higher capacity for electron pair interactions than the aqueous phase. Due to its unique selectivity, the poly(Na 11-AAU) micellar system would become an attractive new option for selectivity optimization on methods development.  相似文献   

3.
A water-soluble terpolymer (PAVA) was synthesized by aqueous free radical copolymerization technique using acrylamide(AM), sodium 2-acrylamido-2-methylpropane-sulphonate (NaAMPS) and a macromonomer: p-vinylbenzyl-terminated octylphenoxy poly(ethylene oxide) (VPEO, degree of polymerization: 10). The remarkable intermolecular hydrophobic associations were formed in water and a brine solution for this polymer, which resulted in a good thickening effect, resistance to salt and salt-thickening. The hydrophobically associating microstructures of PAVA in aqueous solutions were measured by the fluorescent probe and scanning electron microscope. As polymer concentration was increased in water and brine solutions, the associating strength and non-polarity of hydrophobic microdomains increased remarkably. However, at the polymer concentrations higher than 0.20 g/dL, the non-polarity of hydrophobic microdomains tended to remain constant, and the I 1/I 3 value changed slightly in 0.5 g/dL NaCl. The continuous associating structures were formed by the expanded polymer chains in brine solutions, as well as in water. As the NaCl concentration increased, the non-polarity of associating microstructures increased slowly, but the compact degree of these microstructures increased.  相似文献   

4.
The interaction between the anionic surfactant, sodium dodecyl sulfate, and the polyelectrolyte, poly(diallyldimethylammonium chloride), may lead to formation of nanoparticles dispersed in water. The morphology of the resulting nanoparticles and their ability to solubilize hydrophobic molecules were evaluated. As shown by SEM and AFM imaging, the particles are spherical, having a diameter of about 20 nm. The solubilization within the nanoparticles was tested with pyrene, a fluorescence probe, and Nile Red, a solvatochromic probe. It was found that for Nile Red the solubilization within the nanoparticles is at lower polarity than for SDS micelles, and from pyrene solubilization it appears that the hydrophobicity of the nanoparticles depends on the ratio between the SDS molecules and the charge unit of the polymer.  相似文献   

5.
Steady-state and time-resolved fluorescence measurements were used to study the relaxation of the microenvironment of hydrophobic probes 6-propionyl-2-(dimethylamino)naphthalene (prodan) and 6-dodecanoyl-2-(dimethylamino)naphthalene (laurdan) in systems containing vesicles formed by the amphiphilic diblock copolymer poly(epsilon-caprolactone)-block-poly(ethylene oxide) (PCL-PEO) and water/tetrahydrofurane (THF) solvent mixtures. It was found that in case of prodan, both steady-state and time-resolved emission spectra were composed of two subspectra corresponding to the emission of prodan molecules located (i) in fairly rigid (effectively viscous) and hydrophobic domains of the vesicles close to the PCL/PEO interface and (ii) in a more polar and less viscous medium (in the bulk solution). The fraction of the emission from the more polar microenvironment increases with increasing content of THF in the system. Laurdan, in contrast to prodan, appeared to be solubilized preferentially in the hydrophobic domains up to 30 vol % of THF content, and its emission spectra changed only due to swelling of hydrophobic PCL domains by added THF. The study shows that the analysis of the time-resolved emission from a probe distributed in two media is, in principle, possible, but it is quite complex and appreciably less accurate, and the relaxation times are ill-defined averages of several processes. The bimodal or shoulder-containing time-resolved spectra have to be decomposed in pertinent time-resolved subspectra and treated separately. Another important result of the study is a piece of knowledge concerning the motion of the probe with respect to the vesicle. In the studied complex system, not only the relaxation of the solvent and reorganization of polymer segments around the fluorescent headgroup of the probe affect the emission but also a lateral motion of the probe with respect to the nanoparticle within the lifetime of the excited state contributes significantly to the relaxation and to the relatively slow time-resolved Stokes shift.  相似文献   

6.
 Two-phase systems consisting of a polymer rich phase and polymer depleted phase, where the polymer is either ethyl(hydroxy ethyl)cellulose (EHEC) or Ucon (a random copolymer of ethylene oxide and propylene oxide), have been studied. Both of these polymers can be separated from an aqueous solution by either temperature increase or addition of cosolutes. The polymers are thermoseparating and phase separate in water solutions at the cloud point temperature. Two types of EHEC have been studied: one with a cloud point at 60 °C and the other at 37 °C. The Ucon polymer used in this study has a cloud point at 50 °C. Ternary phase diagrams of polymer/water/cosolute systems have been investigated. When a strongly hydrophilic or hydrophobic cosolute is added to an EHEC- or Ucon–water solution, a phase separation occurs already at, or below, room temperature. As cosolutes, hydrophobic molecules like phenol, butyric and propionic acid, and hydrophilic molecules like glycine, ammonium acetate, sodium carboxylates (acetate to valerate), were studied. The polymer rich phase formed when mixing polymer, water and cosolute was strongly enriched or depleted with hydrophobic or hydrophilic cosolutes, respectively. The two phase region increased for propionic acid, butyric acid and phenol as a result of increased cosolute hydrophobicity. The opposite occurred in the series sodium acetate, sodium butyrate and sodium valerate. The effect of temperature on the phase behaviour has also been investigated. Model calculations based on Flory–Huggins theory of polymer solutions are presented, in form of a phase diagram, which semiquantitatively reproduce some experimental results. Received: 5 July 1996 Accepted: 4 November 1996  相似文献   

7.
运用荧光淬灭技术,包括稳态荧光淬灭法(SSFQ)和时间分辨荧光淬灭法(TRFQ),研究了疏水缔合水溶性丙烯酰胺2苯氧基丙烯酸酯多嵌段共聚物[P(AM POEA)]在水溶液中自组装的聚集数.这类聚合物在水溶液中易形成胶束状聚集体,探针芘分子和淬灭剂二苯酮增溶于疏水微区,荧光测定结果很好地符合Poisson淬灭模型.实验结果表明聚合物链结构、聚合物浓度和无机盐对聚集体的尺寸具有重要影响.聚合物自组装聚集数NA随疏水单体含量的增加和疏水嵌段长度的减小而增大,同时也随聚合物浓度和NaCl浓度增加而增大.另外对聚合物链结构、聚集数和溶液粘度的相互关系进行了讨论.  相似文献   

8.
The vesicle-forming surfactant, sodium N-(11-acrylamidoundecanoyl)-l-valinate was polymerized to obtain corresponding polysoap. Light scattering and fluorescence probe techniques were used to characterize the polysoap. Fluorescence probe studies suggested that the polymer forms intra-chain as well as inter-chain aggregates. The microenvironment of the aggregates was studied by fluorescence measurements using 1-anilinonaphthalene, pyrene, and 1,6-diphenylhexatriene (DPH) as probe molecules. Fluorescence anisotropy studies by use of DPH have indicated a high local viscosity of the aggregates formed by the polysoap in water. The pH-induced change of the aggregate structure has been studied. The phase transition temperature of the polysoap was determined from temperature dependence of fluorescence anisotropy of DPH. Dynamic light scattering measurements were performed to determine the mean size of the aggregates. Transmission electron micrographs revealed closed vesicles in water.  相似文献   

9.
The long‐range attractive force or “snap‐in” is an important phenomenon usually occurring when a solid particle interacts with a water/gas interface. By using PeakForce quantitative nanomechanics the origin of snap‐in in the force curve between the atomic force microscopy (AFM) probe and the water/gas interface of nanobubbles has been investigated. The snap‐in frequently happened when the probe was preserved for a certain time or after being used for imaging solid surfaces under atmospheric conditions. In contrast, imaging in liquids rarely induced a snap‐in. After a series of control experiments, it was found that the snap‐in can be attributed to hydrophobic interactions between the water/gas interface and the AFM probe, which was either modified or contaminated with hydrophobic material. The hydrophobic contamination could be efficiently removed by a conventional plasma‐cleaning treatment, which prevents the occurring of the snap‐in. In addition, the adsorption of sodium dodecyl sulfate onto the nanobubble surface changed the water/gas interface into hydrophilic, which also eliminated the snap‐in phenomenon.  相似文献   

10.
Two new antenna polyelectrolytes, poly(sodium styrenesulfonate-co-N-vinylcarbazole) (PSSS–VCz) and poly[sodium styrenesulfonate-co-N-(acryloyloxyhexyl)carbazole](PSSS–AHCz) have been synthesized. Both polymers were found to solubilize large hydrophobic compounds such as perylene in aqueous solution, but PSSS–AHCz was much more efficient than PSSS–VCz. The distribution coefficients of perylene between the polymer pseudophase and water was determined to be (2.9 ± 0.1) × 106 and (4.0 ± 0.2) × 104 in PSSS–AHCz and PSSS–VCz, respectively. The greater solubilizing ability of PSSS–AHCz is attributed to the higher content of hydrophobic monomer units in the polymer. Both copolymers displayed photocatalytic activity, absorbing light in the UV-visible spectral region. Energy can then be transferred to a solubilized molecule or dissolved oxygen and induce photochemical reactions. The model reaction used in this study was the photosensitized oxidation of perylene solubilized in aqueous polymer solutions. PSSS–AHCz was found to be a much more efficient photocatalyst than PSSS–VCz. The enhanced photocatalytic activity of PSSS–AHCz is attributed to the greater concentration of carbazole chromophores, the higher local concentration of probe in the polymeric pseudophase and possibly to the elimination of the low-energy excimer.  相似文献   

11.
Several copolymers of poly(sodium styrenesulfonate-styrene-vinylbenzylchloride) and poly(sodium styrenesulfonate-2-vinylnaphthalene- vinylbenzylchloride) containing various amounts of rose bengal chromophores attached to the polymer chain were synthesized. The copolymers are soluble in water and can solubilize large hydrophobic compounds. They are efficient genarators of singlet oxygen, and act as photosensitizers in the oxidation of singlet oxygen acceptors which are dissolved in the water phase and solubilized in the hydrophobic polymeric microdomains.  相似文献   

12.
Various latex dispersions from vinyl acetate/sodium ethene sulphonate (sodium vinyl sulphonate) copolymers, stabilised by a constant amount of Hostapal BV, a surfactant with poly(ethylene oxide) groups, were investigated by a variety of solid and liquid state nuclear magnetic resonance methods. In order to investigate the influence of sodium ethene sulphonate on the film formation process, the serum and polymer were analysed separately. The stoichiometric monomer composition of the copolymer in the aqueous phase and in the hydrophobic particles was obtained. The ionic comonomer is enriched at the particle surface via its proximity to the applied surfactant by two-dimensional exchange NMR. For investigations of the film formation process, latex dispersions were prepared and dried to form spatially homogeneous films at different defined solid contents. Depending on the chemical composition of a chosen dispersion, NMR allows the investigation of the drying process of the water. The drying process is a function of the ionic strength of the dispersion and the hydrophilicity of the polymer. It is correlated to the drying mechanism of the water within the film. A not fully dried film contains external water outside the particles, water at ionic and non-ionic groups at surfactants in the polymer water interface and, additionally, water in the swollen and mobilised polymer. The distribution of water to these environments is markedly changed by the ionic comonomer, especially close to the end of the drying process.  相似文献   

13.
This paper reports the main results of the studies carried out in our laboratory on various kinds of polymer aggregation in aqueous and organic solutions. (1) In solutions of a polymer blend with controllable hydrogen bonding, a transition from individual polymer coils to intermolecular complex is observed as the hydrogen bonding interaction increases to a certain level. This is found to be a general phenomenon of polymer blends in which hydrogen bonding is adjustable. (2) A new kind of aggregation behavior of block ionomers based on SEBS is found and studied by fluorospectroscopy. The results explore that the block ionomer can form dispersion of hydrophobic aggregates in water stabilized by rare ionic groups. (3) Fluorocarbon-containing PNIPAM in water establishes hydrophobic association. Fluorocarbon-modified pyrene (PycoRf) is found to be qualified to serve as a fluorescent probe to monitor the association.  相似文献   

14.
刘华姬  陈宇 《高分子科学》2017,35(8):1035-1042
Optically active and inactive hyperbranched polymers with specific thermoresponsive behaviours in water were reported.Through two steps hyperbranched polyethylenimine (HPEI) polymers terminated with different amount of D-phenylalanine (D-Phe),L-phenylalanine (L-Phe) or DL-phenylalanine (DL-Phe) were prepared and characterized.The analyses on the solution properties by turbidimetry,dynamic light scattering,fluorescence probe and 1H-NMR demonstrated that all the polymers exhibited specific thermoresponsive behaviours in water,including:(1) In the dilute polymer concentration region,increasing the polymer concentration led to the increase of phase transition temperature;(2) The optically inactive thermoresponsive hyperbranched polymers showed a higher cloud-point temperature (Tcp) than their corresponding optically active ones in a relatively higher polymer concentration;(3) At the same polymer concentration the hydrophobic groups of the optically inactive HPEI-DL-Phe formed more perfect hydrophobic domain than those of the optically active HPEI-L-Phe and HPEI-D-Phe.  相似文献   

15.
两亲性壳聚糖衍生物的合成及其自聚集现象   总被引:1,自引:0,他引:1  
以壳聚糖为主链, 聚乙二醇单甲醚为亲水性链段, 癸二酸为疏水链段, 合成了一系列两亲性壳聚糖衍生物. 通过FTIR, 1H NMR和X射线粉末衍射等手段对壳聚糖衍生物进行了结构表征, 由元素分析方法计算出衍生物的取代度. 采用直接溶解法制备了壳聚糖衍生物的空白胶束, 通过透射电子显微镜(TEM)观察了胶束的形态. 由动态光散射(DLS)测定了胶束的粒径及分布, 并以芘为分子探针, 通过荧光光谱法测定了壳聚糖衍生物的临界聚集浓度(CAC). 研究结果表明, 壳聚糖主链上疏水链段的取代度越大, 其衍生物的临界聚集浓度越低, 相同浓度下的胶束的粒径也越小.  相似文献   

16.
This paper reports on studies of the rheological properties of cationic starch (CS)/ surfactant systems. The degree of substitution of the CS was 0.1 - 0.8. Surfactants investigated were sodium dodecyl sulfate (SDS), potassium octanoate (KOct), sodium decanoate (NaDe)potassium dodecanoate (KDod), sodium oleate (NaOl) and sodium erucate (NaEr). Aggregation of surfactant micelles with the polymer produces a hydrophobic and pseudoplastic gel-like complex phase with low water content and high viscosity. The rheological behavior of the gels is described by the Herschel-Bulkley model. In dilute aqueous solution the CS/surfactant aggregate structure resembles a randomly coiled polymer network, in which polymer molecules are linked by micelles. The rheological data for the gel are compatible with the assumption that the surfactants form liquid crystalline structures with the polymer anchored to the surfactant aggregates, as recently suggested for analogous systems. However, this conjecture needs to be corroborated by more direct determinations of the structure.  相似文献   

17.
Abstract— Small mole fractions of zinc(II) tetraphenylporphyrin (ZnTPP) moieties were covalently incorporated into amphiphilic polysulfonates having bulky hydrophobic groups such as lauryl, cyclododecyl, and (2-naphthyi)methyl (Np) groups in their side chains. The ZnTPP moieties are "compartmentalized" in the hydrophobic domains of these amphiphilic polyelectrolytes in aqueous solution. For comparison, the ZnTPP moieties were covalently incorporated into a polysulfonate without hydrophobic groups. The ZnTPP moieties in this reference polymer are exposed to water in aqueous solution. The compartmentalized ZnTPP systems in aqueous fluid solution emitted phosphorescence and thermally activated delayed fluorescence at room temperature. This is due to an extremely long-lived triplet excited state in the compartmentalized systems at room temperature in aqueous solution, e.g. 19 ms for ZnTPP compartmentalized in Np domains, compared with 3 ms for ZnTPP in the reference polymer. These remarkable compart-mentalization effects may be attributed to a restriction of motional freedom of the ZnTPP moiety isolated in a rigid and hydrophobic microenvironment provided by the amphiphilic polyelectrolytes in aqueous solution.  相似文献   

18.
Seven phospholipids, modified with ester groups in their hydrophobic chains, were synthesized and examined for their ability to promote sodium ion flux across vesicular membranes. It was found by 23Na NMR that only the phospholipids having short chain segments beyond their terminal ester groups catalyze sodium ion transfer by up to 2 orders of magnitude relative to a conventional phospholipid, POPC. The rates increase with the concentration of the ester-phospholipid admixed with POPC in the bilayer. More surprisingly, the rates increase with the time allowed for the vesicles to age. This was attributed to ester-phospholipid migrating in the bilayers to form domains that solubilize the sodium ion within the hydrocarbon interior of the membrane. Such membrane domains explain why shift reagent-modified NMR spectra display three 23Na signals representing sodium outside the vesicles, sodium within the vesicular water pools, and sodium within the membranes themselves.  相似文献   

19.
In the present work, we investigated self-assembling of a poly(phenylacetylene) carrying L-valine pendants (PPA-Val) in a water/methanol solution, upon evaporation of the solution on mica, and on the water surface. With intercalation of a fluorescence probe of Ru(phen)2(dppx)2+ (phen = 1,10-phenanthroline, dppx=7,8-dimethyldipyridophenazine) into the hydrophobic cavities associated by the PPA-Val chains, their helical structures were directly detected in solution with an in situ fluorescence microscope. Helical aggregates were observed with AFM upon evaporation of the solvents, suggesting that the helical structures in the solution are the building blocks of the helical aggregates. Self-assembling structures of PPA-Val on the water surface were, however, very different from that formed upon evaporation of its THF solution on the mica surface. The polymer chains associated into a monolayer of extended fibers on the water surface, whereas superhelical fibers formed on the mica surface. Water molecules play a critical role in inducing the polymer to form diverse morphological structures in its bulk solution and on its surface. In solution, the isotropic hydrophobic effect drove the polymer chains to form superhelical aggregates, while on the water surface, the hydrophobic effect concentrated mainly on the lateral part of the polymer, thus giving a monolayer of extended fibers.  相似文献   

20.
A series of sodium methacrylate and poly(ethylene glycol) (PEG) comb copolymers (MAA/PEG) with approximate PEG chain lengths of 7, 11, and 22 ethylene oxide units were synthesized by free radical polymerization. Their weight-average molecular mass was found to be approximately 66 000. A commercial sample of a PEG comb polymer with an acrylic backbone was also used in the studies (Sokalan HP 80). The interaction of the MAA/PEG comb polymers and pure sodium methacrylate (SPMA) with sodium dodecyl sulfate (SDS) was studied by ESR spectroscopy using 5-doxyl stearic acid (5-DSA) spin probe and by conductivity measurements. Surfactant aggregation in water occurred at SDS concentrations lower than the surfactant critical micelle concentration (cmc) and depended on the polymer concentration. The observations have been attributed to changes in the effective ionic strength of the systems due to the polymer itself, and it has been concluded that there is no interaction between the MAA/PEG comb copolymers or SPMA and SDS. This has been confirmed by the fact that the decrease in surfactant aggregation concentration is similar in magnitude to the decrease observed on adding NaCl when counterion ion condensation effects are taken into account. It is apparent that the electrostatic repulsions between the surfactant molecules and the methacrylate backbone of the MAA/PEG comb copolymers inhibit association of SDS with the PEG side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号