首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First-principles calculations are used to investigate the mechanical and thermodynamic properties of cubic YH2 at different pressures and temperatures. The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) method is used to describe the exchange-correlation energy in the present work. The calculated equilibrium lattice constant a and bulk modulus B are in good accordance with the available experimental values. According to the Born-Huang criteria for mechanical stability, elastic constants are calculated from the strain-induced stress method in a pressure range from 0 to 67.1 GPa. Isotropic wave velocities and sound velocities are discussed in detail. It is found that the Debye temperature decreases monotonically with the increase of pressure and that YH2 has low anisotropy in both longitudinal and shear-wave velocities. The calculated elastic anisotropic factors indicate that YH2 has low anisotropy at zero pressure and that its elastic anisotropy increases as pressure increases. Through the quasi-harmonic Debye model, in which phononic effects are considered, the thermodynamic properties of YH2, such as the relations of (V-Vo)/Vo to the temperature and the pressure, the dependences of heat capacity Cv and thermal expansion coefficient a on temperature and pressure ranging from 0 to 2400 K and from 0 to 65 GPa, respectively, are also discussed.  相似文献   

2.
The electrical resistivity variation of 1,4-bis[(4-methylphenyl)-1,3,4-oxadiazolyl]phenylene (OXD-1) microcrystal is studied under variable pressure and temperature conditions by a quasi four-probe method in a diamond anvil cell. The sample resistivity is calculated with a finite element analysis method. The temperature and pressure dependencies of resistivity of OXD-1 microcrystal are measured up to 150℃ and 15 GPa. The resistivity decrease with temperature increasing indicates that OXD-1 exhibits an organic-semiconductor transport property in the experimental pressure region. With pressure increasing, the resistivity of OXD-1 increases firstly and reaches the maximum at about 6.2 GPa, and then begins to decrease as the pressure increases continuously. In situ x-ray diffraction data under pressure provide obvious prove that the anomaly of resistivity variation at 6.2 GPa is caused by the pressure-induced amorphism of OXD-1.  相似文献   

3.
We perform the in-situ conductivity measurement on BaF2 at high pressure using a microcircuit fabricated on a diamond anvil cell. The results show that BaF2 initially exhibits the electrical property of an insulator at pressure below 25 GPa, it transforms to a wide energy gap semiconductor at pressure from 25 to 30 GPa, and the conductivity increases gradually with increasing pressure from 30 GPa. However, the metallization predicted by theoretical calculation at 30-33 GPa cannot be observed. In addition, we measure the temperature dependence of the conductivity at several pressures and obtain the relationship between the energy gap and pressure. Based on the experimental data, it is predicted that BaF2 would transform to a metal at about 87 GPa and ambient temperature. The conductivity of BaF2 reaches the order of 10^-3Ω^-1 cm^-1 at 37 GPa and 2400 K, the superionic conduction is not observed during the experiments, indicating the application of pressure elevates greatly the transition temperature of the superionic conduction.  相似文献   

4.
<正>The elastic and thermodynamic properties of NbN at high pressures and high temperatures are investigated by the plane-wave pseudopotential density functional theory(DFT).The generalized gradient approximation(GGA) with the Perdew-Burke-Ernzerhof(PBE) method is used to describe the exchange-correlation energy in the present work.The calculated equilibrium lattice constant a0,bulk modulus B0,and the pressure derivative of bulk modulus B0’ of NbN with rocksalt structure are in good agreement with numerous experimental and theoretical data.The elastic properties over a range of pressures from 0 to 80.4 GPa are obtained.Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail.It is indicated that NbN is highly anisotropic in both longitudinal and shear-wave velocities. According to the quasi-harmonic Debye model,in which the phononic effect is considered,the relations of(V-V0)/V0 to the temperature and the pressure,and the relations of the heat capacity CV and the thermal expansion coefficientαto temperature are discussed in a pressure range from 0 to 80.4 GPa and a temperature range from 0 to 2500 K.At low temperature,CV is proportional to T3 and tends to the Dulong-Petit limit at higher temperature.We predict that the thermal expansion coefficientαof NbN is about 4.20×10-6/K at 300 K and 0 GPa.  相似文献   

5.
李强  杨俊升  黄多辉  曹启龙  王藩侯 《中国物理 B》2014,23(1):17101-017101
The thermodynamic properties and the phase transition of ThO2 from the cubic structure to the orthorhombic structure are investigated using the first-principles projector-augmented wave method. The vibrational contribution to Helmholtz free energy is evaluated from the first-principles phonon calculations. The anharmonic contribution to quasi-harmonic free energy is accounted for by using an effective method(2010 Phys. Rev. B 81 172301). The results reveal that at ambient temperature, the phase transition from the cubic phase to the orthorhombic phase occurs at 26.45 GPa, which is consistent with the experimental and theoretical data. With increasing temperature, the transition pressure decreases almost linearly. By comparing the experimental results with the calculation results, it is shown that the thermodynamic properties of ThO2 at high temperature improve substantially after including the anharmonic correction to quasi-harmonic free energy.  相似文献   

6.
刘丽  韦建军  安辛友  王雪敏  刘会娜  吴卫东 《中国物理 B》2011,20(10):106201-106201
The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/V0, the Debye temperature θ, the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K.  相似文献   

7.
The thermoelastic properties of CaO over a wide range of pressure and temperature are studied using density functional theory in the generalized gradient approximation. The transition pressure taken from the enthalpy calculations is 66.7GPa for CaO, which accords with the experimental result very well. The athermal elastic moduli of the two phases of CaO are calculated as a function of pressure up to 200GPa. The calculated results are in excellent agreement with existing experimental data at ambient pressure and compared favourably with other pseudopotential predictions over the pressure regime studied. It is also found that the degree of the anisotropy rapidly decreases with pressure increasing in the B1 phase, whereas it strongly increases as the pressure increases in the B2 phase. The thermodynamic properties of the B1 phase of CaO are predicted using the quasi-harmonic Debye model; the heat capacity and entropy are consistent with other previous results at zero pressure.  相似文献   

8.
李强  黄多辉  曹启龙  王藩侯 《中国物理 B》2013,22(3):37101-037101
The first-principles projector-augmented wave method employing the quasi-harmonic Debye model,is applied to investigate the thermodynamic properties and the phase transition between the trigonal R3c structure and the orthorhombic Pnma structure.It is found that at ambient temperature,the phase transition from the trigonal R3c phase to the orthorhombic Pnma phase is a first-order antiferromagnetic-nonmagnetic and insulator-metal transition,and occurs at 10.56 GPa,which is in good agreement with experimental data.With increasing temperature,the transition pressure decreases almost linearly.Moreover,the thermodynamic properties including Grneisen parameter,heat capacity,entropy,and the dependences of thermal expansion coefficient on temperature and pressure are also obtained.  相似文献   

9.
余本海  陈东 《中国物理 B》2012,21(6):60508-060508
The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α-and β-Si3N4.The ground-state parameters accord quite well with the experimental data.Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K.The α→β phase transformation would not occur in a pressure range of 0-40 GPa and a temperature range of 0-300 K.Actually,the α→β transition occurs at 1600 K and 7.98 GPa.For α-and β-Si3N4,the c axes are slightly more incompressible than the a axes.We conclude that β-Si3N4 is a hard material and ductile in nature.On the other hand,β-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0-10 GPa.Besides,the thermodynamic properties such as entropy,heat capacity,and Debye temperature of α-and β-Si3N4 are determined at various temperatures and pressures.Significant features in these properties are observed at high temperature.The calculated results are in good agreement with available experimental data and previous theoretical values.Many fundamental solid-state properties are reported at high pressure and high temperature.Therefore,our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.  相似文献   

10.
The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α-and β-Si3N4.The ground-state parameters accord quite well with the experimental data.Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K.The α→β phase transformation would not occur in a pressure range of 0-40 GPa and a temperature range of 0-300 K.Actually,the α→β transition occurs at 1600 K and 7.98 GPa.For α-and β-Si3N4,the c axes are slightly more incompressible than the a axes.We conclude that β-Si3N4 is a hard material and ductile in nature.On the other hand,β-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0-10 GPa.Besides,the thermodynamic properties such as entropy,heat capacity,and Debye temperature of α-and β-Si3N4 are determined at various temperatures and pressures.Significant features in these properties are observed at high temperature.The calculated results are in good agreement with available experimental data and previous theoretical values.Many fundamental solid-state properties are reported at high pressure and high temperature.Therefore,our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.  相似文献   

11.
Using the technology of pressure jump, variations of temperature associated with pressure from 2.4 GPa to 4.6 GPa are measured for lead. The Grfuneisen parameter is calculated from the thermodynamic relation γ =(Ks/T)(aT/aP)s, in which substitution of △T/△P for aT/aP at median pressure is strictly justified. The correction of temperature change is carried out by analysing the experimental data, which makes the process more approaching to an adiabatic condition. The calculated values of △T/ △ P and γ gradually decrease with the increasing pressure. The decrease trend is consistent with the previous work. The γ values in the range of 2-3 GPa are averagely higher than the results of Ramakrishnan et al., indicating the effect of temperature correction. The improved method is promising for measurements of Grfineisen parameter to higher pressure range.  相似文献   

12.
The Raman spectroscopy of n-pentadecane is investigated in a moissanite anvil cell at normal temperatures and a diamond anvil cell under pressure to about 3000MPa and at temperature from 298 to 573K. Result indicates that at room temperature the vibration modes, assigned to the symmetric and asymmetric stretching of CH3 and CH2 stretching, shift to higher frequency and display a pressure dependent quasi-linear curve. A liquid-solid phase transition appears at a pressure of 150 MPa. The high temperature solidus line of n-pentadecane follows a quadratic function of P = 0.02369T^2 - 9.117T + 725.58, in agreement with previous conclusion derived from studies of other hydrocarbons. Upon phase transition, fitting the experimental data obtained in a temperature range of 283 553 K to the Clausius-Clapeyron equation allows one to define the thermodynamic parameters of n-pentadecane of dP/dT = 0.04738T - 9.117.  相似文献   

13.
The plane-wave pseudo-potential method within the framework of ab initio technique is used to investigate the structural and elastic properties of α-and β-Si3N4. The ground-state parameters accord quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 40 GPa when compressed at 300 K. The α → β phase transformation would not occur in a pressure range of 0-40 (3Pa and a temperature range of 0 300 K. Actually, the α → β transition occurs at 1600 K and 7.98 GPa. For α-and β-Si3N4, the c axes are slightly more incompressible than the a axes. We conclude that β-Si3N4 is a hard material and ductile in nature. On the other hand, β-Si3N4 is also found to be an ionic material and can retain its mechanical stability in a pressure range of 0 - 010 GPa. Besides, the thermodynamic properties such as entropy, heat capacity, and Debye temperature of α-and β-Si3N4 are determined at various temperatures and pressures. Significant features in these properties are observed at high temperature. The calculated results are in good agreement with available experimental data and previous theoretical values. Many fundamental solid-state properties are reported at high pressure and high temperature. Therefore, our results may provide useful information for theoretical and experimental investigations of the Si3N4 polymorphs.  相似文献   

14.
Polycrystalline cubic boron nitride(Pc BN) compacts, using the mixture of submicron cubic boron nitride(c BN) powder and hexagonal BN(h BN) powder as starting materials, were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃ without additives. In this paper, the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.% to 24 vol.%, which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure. Transmission electron microscopy(TEM) analysis shows that after high pressure and high temperature(HPHT) treatments, the submicron c BN grains abounded with high-density nanotwins and stacking faults, and this contributed to the outstanding mechanical properties of Pc BN. The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃ possessed the outstanding properties, including a high Vickers hardness(~ 61.5 GPa), thermal stability(~ 1290℃ in air),and high density(~ 3.46 g/cm~3).  相似文献   

15.
Photoluminescence of GaAs0.973Sb0.022N0.005 is investigated at different temperatures and pressures. Both the alloy band edge and the N-related emissions, which show different temperature and pressure dependences, are observed. The pressure coefficients obtained in the pressure range 0-1.4GPa for the band edge and N-related emissions are 67 and 45meV/GPa, respectively. The N-related emissions shift to a higher energy in the lower pressure range and then begin to redshift at about 8.5GPa. This redshift is possibly caused by the increase of the X-valley component in the N-related states with increasing pressure.  相似文献   

16.
徐涛  黄蕾  董雁国  李工  李延春  刘景  刘日平 《中国物理 C》2009,33(11):1028-1032
The compression behavior of the heavy RE-based BMC Gd40Y16Al24Co20 under high pressure has been investigated by in situ high pressure angle dispersive X-ray diffraction measurements using synchrotron radiation in the pressure range of 0-33.42 GPa at room temperature. By fitting the static equation of state at room temperature, we find the value of bulk modulus B is 61.27±4 GPa which is in good agreement with the experimental study by pulse-echo techniques of 58 GPa. The results show that the amorphous structure in the heavy RE-based BMG Gd40Y16Al24Co20 keeps quite stable up to 33.42 GPa although its compressibility is as large as about 33%. The coexistence of normal local structure similar to that of other BMGs and covalent bond structure similar to those of oxide glasses may be the reason for the anomalous property under high pressure of the Gd4oY16Al24Co2o BMG.  相似文献   

17.
罗雰  傅敏  姬广富  陈向荣 《中国物理 B》2010,19(2):27101-027101
The structural, elastic constants and anisotropy of RuB2 under pressure are investigated by first-principles calcula-tions based on the plane wave pseudopotential density functional theory method within the local density approximation (LDA) as well as the generalized gradient approximation (GGA) for exchange and correlation. The results accord well with the available experimental and other theoretical data. The elastic constants, elastic anisotropy, and Debye temperature Θ as a function of pressure are presented. It is concluded that RuB2 is brittle in nature at low pressure, whereas it becomes ductile at higher pressures. An analysis for the calculated elastic constant has been made to reveal the mechanical stability of RuB2 up to 100 GPa.  相似文献   

18.
In-situ high pressure Raman spectra and electrical conductivity measurements of scheelite-structure compound PbMoO4 are presented. The Raman spectrum of PbMoO4 is determined up to 26.5 GPa on a powdered sample in a diamond anvil cell (DAC) under nonhydrostatic conditions. The PbMoO4 gradully experiences the trans- formation from the crystal to amorphous between 9.2 and 12.5 GPa. The crystal to amorphous transition may be due to the mechanical deformation and the crystalographic transformation. Furthermore, the electrical conductivity of PbMoO4 is in situ measured accurately using a microcircuit fabricated on a DAC based on the van der Pauw method. The results show that the electrical conductivity of PbMoO4 increases with increases of pressure and temperature. At 26.5 GPa, the electrical conductivity value of PbMoO4 at 295K is 1.93 - 10-4 S/cm, while it raises by one order of magnitude at 430K and reached 3.33 - 10-3 S/cm. However, at 430K, compared with the electrical conductivity value of PbMoO4 at 26.5 GPa, it drops by about two order magnitude at 7.4 GPa and achieves 2.81 × 10^-5 S/cm. This indicates that the effect of pressure on the electrical conductivity of PbMoO4 is more obvious than that of temperature.  相似文献   

19.
A preliminary experiment of sound velocity measurements for porous iron with initial average density of 6.275 g/cm^3 has been performed at pressures below 100 CPa, in order to clarify a long-standing problem that the static melting temperature Tin, mostly below 100CPa due to its technical limitations, is notably lower than the extrapolated melting data inferred from the shock wave experiments made above 200 CPa, for the sake of making a direct comparison between the experimental static and dynamic melting temperatures in the same pressure region. With the lately proposed Hugoniot sound velocity data analysis technique [Chin. Phys. Left. 22 (2005) 863], the results deduced from this Hugoniot sound velocity measurement is Tm = 3200 K at 87 CPa and Tm = 3080 K at 80 GPa, which are in good agreement with the two latest static data of Tm = 3510 K at 105 GPa and Tm = 2750 K at 58 GPa, which utilized modern improved double-side laser heating and in situ accurate x-ray diffraction techniques in experiments. It can be concluded that consensus Tm data would be obtained from static and shock wave experiments in the case that the recently improved techniques are adopted in investigations.  相似文献   

20.
The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angledispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of40.9 GPa–73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed. The systematically experimental investigation confirms the phase transition sequence of Sn as β-Sn→bct→bco→ bco + bcc→bcc upon compression to 108.9 GPa at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号