首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapid detection of catalase-positive and catalase-negative bacteria in complex culture media has been accomplished by monitoring of hydrogen peroxide consumption or generation with a graphite-Teflon-peroxidase-ferrocene composite electrode. Escherichia coli and Streptococcus pneumoniae have been used as model catalase-positive and catalase-negative bacteria, respectively. Hydrogen peroxide evolution was amperometrically measured at 0.00 V. Experimental conditions, including the working solution composition, the incubation time and the hydrogen peroxide concentration, were optimized. The reusability of the biosensor was improved by placing a nylon membrane on the bioelectrode surface to prevent fouling caused by the bacterial medium. The developed methodology allowed the detection of E. coli and S. pneumoniae at concentration levels of approximately 2x10(6) and 2x10(5) cfu/mL, in assays taking 10 and 15 min, respectively, without any pre-concentration step or pre-enrichment procedure.  相似文献   

2.
利用纳米金(Au NPs)与还原氧化石墨烯(rGO)复合纳米材料制备了葡萄糖氧化酶生物传感器并用于饮料中葡萄糖含量的检测。将壳聚糖作为还原剂及稳定剂,通过一步法合成了Au NPs-rGO复合材料,并通过物理吸附固定葡萄糖氧化酶(GOx)来制作GOx生物传感器。该传感器在磷酸盐缓冲溶液(0.1 mol/L,p H6.0)中,-0.45 V(vs.Ag/Ag Cl)电位下电流法检测葡萄糖含量,线性检测范围为0.01~0.88 mmol/L,灵敏度为22.54μA·mmol-1·L·cm-2,检出限为1.01μmol/L,且表观米氏常数为0.497 mmol/L。该传感器用于多种饮料中葡萄糖含量的直接检测,结果满意。  相似文献   

3.
An amperometric biosensor for sensitive and selective detection of glucose has been constructed by using highly dispersed Pt nanoparticles supported on carbon nanotubes (Pt-MWCNTs) as sensing interface. The Pt-MWCNTs were synthesized by using the two-step pyrolysis method. This composite shows good electrocatalytic activity towards the oxidation of glucose in alkaline and thus can be used to selectively detect glucose. We found that detection potential and Nafion amount covered on the Pt-MWCNTs modified glassy carbon electrode had considerable influence on the selectivity for amperometric detection of glucose. Under optimal detection conditions (detection potential of 0.0 V versus SCE and 10 μL 1.5% Nafion), selective detection of glucose in the glucose concentration range of 1.0-26.5 mM (correlation coefficient, >0.999) can be performed. The results demonstrate that the Pt-MWCNTs composite is promising for the fabrication of nonenzymatic glucose sensors.  相似文献   

4.
Varshney M  Li Y 《Talanta》2008,74(4):518-525
Double interdigitated array microelectrodes (IAM)-based flow cell was developed for an impedance biosensor to detect viable Escherichia coli O157:H7 cells after enrichment in a growth medium. This study was aimed at the design of a simple flow cell with embedded IAM which does not require complex microfabrication techniques and can be used repeatedly with a simple assembly/disassembly step. The flow cell was also unique in having two IAM chips on both top and bottom surfaces of the flow cell, which enhances the sensitivity of the impedance measurement. E. coli O157:H7 cells were grown in a low conductivity yeast-peptone-lactose-TMAO (YPLT) medium outside the flow cell. After bacterial growth, impedance was measured inside the flow cell. Equivalent circuit analysis indicated that the impedance change caused by bacterial growth was due to double layer capacitance and bulk medium resistance. Both parameters were a function of ionic concentration in the medium, which increased during bacterial growth due to the conversion of weakly charged substances present in the medium into highly charged ions. The impedance biosensor successfully detected E. coli O157:H7 in a range from 8.0 to 8.2x10(8)CFUmL(-1) after an enrichment growth of 14.7 and 0.8h, respectively. A logarithmic linear relationship between detection time (T(D)) in h and initial cell concentration (N(0)) in CFUmL(-1) was T(D)=-1.73logN(0)+14.62, with R(2)=0.93. Double IAM-based flow cell was more sensitive than single IAM-based flow cell in the detection of E. coli O157:H7 with 37-61% more impedance change for the frequency from 10Hz to 1MHz. The double IAM-based flow cell can be used to design a simple impedance biosensor for the sensitive detection of bacterial growth and their metabolites.  相似文献   

5.
A novel film of chitosan-gold nanoparticles is fabricated by a direct and facile electrochemical deposition method and its application in glucose biosensor is investigated. HAuCl(4) solution is mixed with chitosan and electrochemically reduced to gold nanoparticles, which can be stabilized by chitosan and electrodeposited onto glassy carbon electrode surfaces along with the electrodeposition of chitosan. Then a model enzyme, glucose oxidase (GOD) is immobilized onto the resulting film to construct a glucose biosensor through self-assembly. The resulting modified electrode surfaces are characterized with both AFM and cyclic voltammetry. Effects of chitosan and HAuCl(4) concentration in the mixture together with the deposition time and the applied voltage on the amperometric response of the biosensor are also investigated. The linear range of the glucose biosensor is from 5.0 x 10(-5) approximately 1.30 x 10(-3) M with a Michaelis-Menten constant of 3.5 mM and a detection limit of about 13 microM.  相似文献   

6.
An amperometric glucose biosensor was successfully developed by electrochemical polymerization of p-chlorophenol (4-CP) at a Pt electrode in the presence of glucose oxidase. The amperometric response of this biosensor to hydrogen peroxide, formed as the product of enzymatic reaction, was measured at a potential of 0.6 V (vs. SCE) in phosphate buffer solution. The performances of sensors, prepared at different monomer concentrations and polymerization potentials, were investigated in detail. The biosensor prepared under optimal conditions had a linear response to glucose ranging from 2.5 x 10(-4) to 1.5 x 10(-2) mol L(-1) with a correlation coefficient of 0.997 and a response time of less than 2 s. Substrate selectivity of the polymer-based enzyme electrode was tested for coexisting interferents such as uric acid and ascorbic acid, and no discernible response was observed. After 90 days, the response of the biosensor remained almost unchanged, indicating very good stability.  相似文献   

7.
A novel amperometric biosensor for glucose was developed by entrapping glucose oxidase (GOD) in a chitosan composite doped with ferrocene monocarboxylic acid‐aminated silica nanoparticles conjugate (FMC‐ASNPs) and multiwall carbon nanotubes (MWNTs). The entrapped FMC‐ASNPs conjugate performed excellent redox electrochemistry and the presence of MWNTs improved the conductivity of the composite film. This matrix showed a biocompatible microenvironment for retaining the native activity of the entrapped GOD and was in favor of the accessibility of substrate to the active site of GOD, thus the affinity to substrates is improved greatly. Under optimal conditions this biosensor was able to detect glucose with a detection limit of 10 μM (S/N=3) in the linear range of 0.04 to 6.5 mM. The proximity of these three components FMC‐ASNPs, MWNTs and GOD enhanced the electron transfer between the film and electrode. This composite film can be extended to immobilize other enzymes and biomolecules, which will greatly facilitate the development of biosensors and other bioelectrochemical devices.  相似文献   

8.
The application of whole cell analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has emerged as a valuable tool for rapidly identifying/detecting bacteria. This technique requires minimal sample preparation and is simple to perform, but is generally limited to purified samples of bacteria at concentrations greater than 1.0 x 10(6) cells/mL. In this paper, we describe a bacterial detection method that integrates immunomagnetic separation with bacteriophage amplification prior to MALDI-MS analysis. The developed method consists of three main stages: (1) isolation of a target bacterium by immunomagnetic separation; (2) infection of the immuno-captured bacterium with a lytic bacteriophage; and (3) assay of infected medium for bacteriophage progeny using MALDI-MS to produce a molecular weight signal for the virus capsid protein. With this technique, the presence of Escherichia coli in broth was determined in less then 2 h total analysis time at a concentration of approximately 5.0 x 10(4) cells/mL.  相似文献   

9.
An exploration of gold nanoparticles–bacterial cellulose nanofibers (Au‐BC) nanocomposite as a platform for amperometric determination of glucose is presented. Two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP) were immobilized in Au‐BC nanocomposite modified glassy carbon electrode at the same time. A sensitive and fast amperometric response to glucose was observed in the presence of electron mediator (HQ). Both of GOx and HRP kept their biocatalytic activities very well in Au‐BC nanocomposite. The detection limit for glucose in optimized conditions was as low as 2.3 µM with a linear range from 10 µM to 400 µM. The biosensor was successfully applied to the determination of glucose in human blood samples.  相似文献   

10.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

11.
A new carbon-based conducting composite has been developed as electrochemical sensor and biosensor for the amperometric detection of ascorbate and glucose. Electrocatalytic oxidation of ascorbate has been done successfully at unmodified cellulose acetate-graphite composite electrodes, the sensor being highly sensitive, selective and with a low detection limit at 0.0 V vs. SCE and was successfully applied for ascorbate determination in commercial fruit juice samples. An interference free glucose biosensor has also been developed, based on the immobilisation of glucose oxidase by cross-linking with glutaraldehyde on poly (neutral red) modified composite electrodes. The biosensor exhibits a higher sensitivity of 31.5 ± 1.7 µA cm− 2 mM− 1 than other carbon-composite-based glucose biosensors, a detection limit of 20.3 µM and a very short response time.  相似文献   

12.
One of the major problems in amperometric biosensors based on detection of H2O2 produced by enzymatic reaction between oxidase enzymes and substrate is the interference of redox active compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). To minimize these interferences, sodium bismuthate was used for the first time as an insoluble pre‐oxidant in the flow injection (FI) amperometric glucose biosensor at a Glucose oxidase (GOx) immobilized Pt/Pd bimetallic modified pre‐anodized pencil graphite electrode (p.PGE). In this context, these interfering compounds were injected into a flow injection analysis (FIA) system using an injector which was filled with NaBiO3. Thus, these interferents were converted into their redox inactive oxidized forms before reaching the electrode in the flow cell. While glucose was not influenced by the pre‐oxidant in the injector, the huge oxidation peak currents of the interferents decreased significantly in the biosensor. FI amperometric current time curves showed that the AA, DA and UA were minimized by 96 %, 86 %, and 98 % respectively, in the presence of an equivalent concentration of interferences in a 1.0 mM glucose solution. The proposed FI amperometric glucose biosensor exhibits a wide linear range (0.01–10 mM, R2=0.9994) with a detection limit of 2.4×10?3 mM. Glucose levels in the artificial serum and two real samples were successfully determined using the fabricated FI amperometric biosensor.  相似文献   

13.
A new strategy using an arnperometric biosensor with Escherichia coli (E. coli) that provides a rapid toxicity determination of chemical compounds is described. The CellSense biosensor system comprises a biological component immobilized in intimate contact with a transducer which converts the biochemical signal into a quantifiable electrical signal. Toxicity assessment of heavy metals using E.coli biosensors could be finished within 30 min and the 50% effective concentrations (ECso) values of four heavy metals were determined. The results shows that inhibitory effects of four heavy metals to E.coli can be ranked in a decreasing order of Hg^2+ 〉 Cu^2+ 〉 Zn^2+ 〉 Ni^2+, which accords to the results of conventional bacterial counting method. The toxicity test of organic compounds by using CellSense biosensor was also demonstrated. The CellSense biosensor with E. coli shows a good, reproducible behavior and can be used for reproducible measurements.  相似文献   

14.
Present study describes the synthesis of mixed oxide films of manganese and vanadium by electrochemical pulsed deposition technique on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNT). The film was further decorated with gold nanoparticles to enhance the reduction signal of dissolved oxygen in pH 5.17 acetate buffer solution. All of the electrochemical synthesized modified electrodes have been characterized with Scanning electron microscopy(SEM), High‐resolution transmission electron microscopy (HRTEM), X‐Ray photoelectron spectroscopy (XPS), X‐Ray diffraction (XRD) techniques. The electrode obtained (AuNPs/MnOx?VOx/CNT/GCE) was utilized as a platform for glucose biosensor where the glucose oxidase enzyme was immobilized on the composite film with the aid of chitosan and an ionic liquid. The electrochemical performance of the biosensor was investigated by cyclic voltammetry and the relative parameters have been optimized by amperometric measurements in pH 5.17 acetate buffer solution. The developed biosensor exhibited a linear range for glucose between 0.1–1.0 mM and the limit of detection was calculated as 0.02 mM.  相似文献   

15.
《Analytical letters》2012,45(8):1587-1612
Abstract

An amperometric glucose biosensor based on the oxygen electrode principle has been developed. Polycarbonate membranes (pore size from 0.01 μm to 0.4 μm) were used as external glucose diffusion membranes in order to obtain direct proportionality of the amperometric signal to the substrate concentration in the entire physiological range. The commercially available membranes - standard (hydrophilic, treated with Polyvinylpyrrolidone/(PVP)) and PVP-free membranes were compared with membranes coated with a silicone elastomer (silastic). Spindrop coating technique was used to create stable, adhesive coatings over the polycarbonate membranes. These coated membranes achieved diffusion control of the glucose flux such that the amperometric signal of the biosensor was linearly proportional to the substrate concentration up to 16 mM glucose. The membrane parameters were optimized by varying the parameters of the coating process-spin rate of the membrane rotation and the silastic/water ratio in the coating emulsion.  相似文献   

16.
A MEMS‐based impedance biosensor was designed, fabricated, and tested to effectively detect the presence of bacterial cells including E. coli O157:H7 and Salmonella typhimurium in raw chicken products using detection region made of multiple interdigitated electrode arrays. A positive dielectrophoresis based focusing electrode was used in order to focus and concentrate the bacterial cells at the centerline of the fluidic microchannel and direct them toward the detection microchannel. The biosensor was fabricated using surface micromachining technology on a glass substrate. The results demonstrate that the device can detect Salmonella with concentrations as low as 10 cells/mL in less than 1 h. The device sensitivity was improved by the addition of the focusing electrodes, which increased the signal response by a factor between 6 and 18 times higher than without the use of the focusing electrodes. The biosensor is selective and can detect other types of pathogen by changing the type of the antibody immobilized on the detection electrodes. The device was able to differentiate live from dead bacteria.  相似文献   

17.
《Electroanalysis》2005,17(19):1780-1788
The amperometric biosensing of aromatic amines using a composite glucose oxidase (GOD)‐peroxidase (HRP) biosensor in reversed micelles is reported. Rigid composite pellets of graphite and Teflon, in which GOD and HRP were coimmobilized by simple physical inclusion, were employed for the biosensor design. This design allows the in situ generation of the H2O2 needed for the enzyme reaction with the aromatic amines, thus preventing the negative effect that the presence of a high H2O2 concentration in solution has on HRP activity. The H2O2 in situ generation is performed by oxidation of glucose catalyzed by GOD. The effect of the composition of the reversed micelles, i.e., the nature of the organic solvent used as the continuous phase, the nature and concentration of the surfactant used as emulsifying agent, the aqueous 0.05 mol L?1 phosphate buffer percentage used as the dispersed phase, and the glucose concentration in the aqueous phase, on the biosensor response was evaluated. Reversed micelles formed with ethyl acetate, a 5% of phosphate buffer (pH 7.0) containing 3.0×10?3 mol L?1 glucose, and 0.1 mol L?1 AOT (sodium dioctylsulfosuccinate), were selected as working medium. Well‐defined and reproducible amperometric signals at 0.00 V were obtained for p‐phenylenediamine, 2‐aminophenol, o‐phenylenediamine, m‐phenylenediamine, 1‐naphthylamine, o‐toluidine and aniline. The useful lifetime of one single biosensor was of 60 days. The trend in sensitivity observed for the aromatic amines is discussed considering the effect of their structure on the stabilization of the radicals formed in the enzyme reaction which are electrochemically reduced. The behavior of the composite bienzyme electrode was also evaluated in a FI (flow injection) system using reversed micelles as the carrier. The suitability of the composite bienzyme electrode for the analysis of real samples was demonstrated by determining aniline in spiked carrots.  相似文献   

18.
A bienzyme biosensor for the simultaneous determination of glucose and fructose was developed by coimmobilising glucose oxidase (GOD), fructose dehydrogenase (FDH), and the mediator, tetrathiafulvalene (TTF), by cross-linking with glutaraldehyde atop a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM) on a gold disk electrode (AuE). The performance of this bienzyme electrode under batch and flow injection (FI) conditions, as well as an amperometric detection in high-performance liquid chromatography (HPLC), are reported. The order of enzyme immobilisation atop the MPA-SAM affected the biosensor amperometric response in terms of sensitivity, with the immobilisation order GOD, FDH, TTF being selected. Similar analytical characteristics to those obtained with single GOD or FDH SAM-based biosensors for glucose and fructose were achieved with the bienzyme electrode, indicating that no noticeable changes in the biosensor responses to the analytes occurred as a consequence of the coimmobilisation of both enzymes on the same MPA-AuE. The suitability of the bienzyme biosensor for the analysis of real samples under flow injection conditions was tested by determining glucose in two certified serum samples. The simultaneous determination of glucose and fructose in the same sample cannot be performed without a separation step because at the detection potential used (+0.10 V), both sugars show amperometric response. Consequently, HPLC with amperometric detection at the TTF-FDH-GOD-MPA-AuE was accomplished. Glucose and fructose were simultaneously determined in honey, cola softdrink, and commercial apple juice, and the results were compared with those obtained by using other reference methods.  相似文献   

19.
Amperometric enzymatic biosensors have high selectivity and simplicity in use. It has advantages over other analytical methods in biochemistry, pharmacology, so it evokes strong interests1,2. Generally, the detection mode involved in oxidase based biosensors is often based on the electrochemical detection of hydrogen peroxide directly3,4. However the direct oxidation of hydrogen peroxide requires a relative high working potential (exceeding ca. 0.6 V vs. SCE), at which many biological sub…  相似文献   

20.
Porous composite membranes of regenerated silk fibroin and poly(vinyl alcohol) were prepared by adding polyethyleneglycol to the composite solution to reduce the mass-transfer resistance to the diffusion of substrate material transport; their surfaces were visualized with scanning electron microscopy. An amperometric glucose biosensor employing Meldola blue dispersed in polyester ionomer as electron transfer mediator was prepared to test the feasibility and workability of the composite membrane as immobilization matrix for glucose oxidase. The cationic exchange property of the polyester ionomer was employed to provide high local concentrations of Meldola blue (MB+) in the polymer film via ion exchange. Performance and characteristics of the glucose biosensor were evaluated with respect to response time, detection limit, applied potential, thickness of polyester ionomer membrane, pH and temperature. The glucose biosensor possesses a variety of advantages including easy maintenance of enzyme, simplicity of construction, fast response time and high stability. Received: 13 May 1996 / Revised: 30 July 1996 / Accepted: 2 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号