首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Protein film voltammetry of Paracoccus pantotrophus respiratory nitrate reductase (NarGH) and Synechococcus elongatus assimilatory nitrate reductase (NarB) shows that reductive activation of these enzymes may be required before steady state catalysis is observed. For NarGH complementary spectroscopic studies suggest a structural context for the activation. Catalytic protein film voltammetry at a range of temperatures has allowed quantitation of the activation energies for nitrate reduction. For NarGH with an operating potential of ca. 0.05 V the activation energy of ca. 35 kJ mol-1 is over twice that measured for NarB whose operating potential is ca. -0.35 V.  相似文献   

2.
Anderson LJ  Richardson DJ  Butt JN 《Faraday discussions》2000,(116):155-69; discussion 171-90
Protein film voltammetry of NarGH catalysing nitrate reduction under steady state conditions provides information on events occurring within the enzyme during the catalytic cycle. In this discussion we have focused on exploring the ability of two simple catalytic schemes to reproduce the voltammetric response of NarGH; electron transfer to the enzyme's active site being described either by interfacial electron exchange (Scheme 1) or intramolecular electron delivery via the operation of an electron relay centre (Scheme 2). When the two electron reduced, catalytically competent active site of the enzyme is generated from the oxidised form in 'rapid', non-rate limiting steps of the catalytic cycle, the voltammetric behaviour of NarGH cannot be reproduced. Rather under all the conditions investigated, one electron reduction of the active site from a semi-reduced to a fully-reduced state is found to be crucial to progression through the enzyme's catalytic cycle. The catalytically relevant semi- and fully-reduced oxidation states of the NarGH active site are most likely to correspond to the Mo(V) and Mo(IV) states of the Mo(MGD)2 centre, respectively, although it is not possible to rule out the possibility that they correspond to molybdopterin based oxidation states as observed in other enzymes. We suggest that the rate of either conformational rearrangement within the semi-reduced active site or intramolecular electron delivery to the active site constitutes a defining feature in the catalytic cycle of NarGH and results in the napp approximately 1 appearance of the catalytic waveform.  相似文献   

3.
The periplasmic nitrate reductase NAP belongs to the DMSO reductase family that regroups molybdoenzymes housing a bis-molybdopterin cofactor as the active site. Several forms of the Mo(V) state, an intermediate redox state in the catalytic cycle of the enzyme, have been evidenced by EPR spectroscopy under various conditions, but their structure and catalytic relevance are not fully understood. On the basis of structural data available from the literature, we built several models that reproduce the first coordination sphere of the molybdenum cofactor and used DFT methods to make magneto-structural correlations on EPR-detected species. "High-g" states, which are the most abundant Mo(V) species, are characterized by a low-anisotropy g tensor and a high g(min) value. We assign this signature to a six-sulfur coordination sphere in a pseudotrigonal prismatic geometry with a partial disulfide bond. The "very high-g" species is well described with a sulfido ion as the sixth ligand. The "low-g" signal can be successfully associated to a Mo(V) sulfite-oxidase-type active site with only one pterin moiety coordinated to the molybdenum ion with an oxo or sulfido axial ligand. For all these species we investigate their catalytic activity using a thermodynamic point of view on the molybdenum coordination sphere. Beyond the periplasmic nitrate reductase case, this work provides useful magneto-structural correlations to characterize EPR-detected species in mononuclear molybdoenzymes.  相似文献   

4.
The voltammetric response of vitreous carbon electrodes in nitrate solution in the presence of Tl3+ shows the reduction of Tl3+ in two stages, to Tl+ and to metallic thallium, respectively. Nitrate ions are reduced at high rates during the second stage, concurrently with Tl deposition. The catalytic current varies with the concentration of nitrate, but is virtually independent of the Tl3+ concentration. No nitrate reduction occurred when Tl deposition was carried out in a single stage from Tl+ solution, nor during reduction of Tl3+ to Tl+. The results obtained indicate that Tl2+, arising from disproportionation of Tl3+ and Tl0 to yield Tl+, mediates the catalytic reduction of nitrate to ammonia during Tl electrodeposition from Tl3+ solutions.  相似文献   

5.
The immobilization of nitrate reductase (NR) was performed by entrapment in a laponite clay gel and cross-linking by glutaraldehyde. In presence of nitrate and methyl viologen, a catalytic current appeared at -0.60 V illustrating the enzymatic reduction of nitrate into nitrite via the reduced form of the freely diffusing methyl viologen. The electropolymerization of a water-soluble pyrrole viologen derivative within the interlamellar spaces and channels of the host clay matrix successfully carried out the electrical wiring of the entrapped NR. Rotating disk measurements led to the determination of kinetic constants, namely k(2)=10.7 s(-1) and K(M)=7 microM. These parameters reflect the efficiency of the electro-enzymatic reduction of nitrate and the substrate affinity for the immobilized enzyme.  相似文献   

6.
The respiratory nitrate reductase (NapAB) from Rb. sphaeroides is a periplasmic molybdenum-containing enzyme which belongs to the DMSO reductase family. We report a study of NapAB by protein film voltammetry (PFV), and we present the first quantitative interpretation of the complex redox-state dependence of activity that has also been observed with other related enzymes. The model we use to fit the data assumes that binding of substrate partly limits turnover and is faster and weaker when the Mo ion is in the V oxidation state than when it is fully reduced. We explain how the presence in the catalytic cycle of such slow chemical steps coupled to electron transfer to the active site decreases the driving force required to reduce the MoV ion and makes exergonic the last intramolecular electron-transfer step (between the proximal cubane and the Mo cofactor). Importantly, comparison is made with all Mo enzymes for which PFV data are available, and we emphasize general features of the energetics of the catalytic cycles in enzymes of the DMSO reductase family.  相似文献   

7.
Abstract— Neurospora , when starved for several hours, can be stimulated by blue light to conidiate and also shows a blue light-inducible, flavin-mediated absorbance change near 425 nm due to photoreduc-tion of a h-type cytochrome. Under the same physiological conditions, nitrate reductase activity (NADPH-dependent nitrate reduction) decreases and the activity of its small subunit (methylviologen-to-nitrate reductase activity) increases. The increased activity is membrane associated (plasma membrane and mitochondria). The methylviologen-to-nitrate activity increase can also be brought about by treating mycelium briefly with diluted acetone. It is, therefore, interpreted as change within the nitrate reductase molecule (configuration change or separation of subunits with changed exposure of active sites). After acetone treatment the blue light-induced absorbance change can be observed immediately in the mycelium. Nitrate reductase with its flavin and protoheme prosthetic groups seems to be involved in both events, the induction of conidiation and in the described absorbance change.  相似文献   

8.
Structural-functional analogue of the reduced site of dissimilatory nitrate reductase is synthesized as [Et4N][MoIV(SPh)(PPh3)(mnt)2].CH2Cl2 (1). PPh3 in 1 is readily dissociated in solution to generate the active site of the reduced site of dissimilatory nitrate reductase. This readily reacts with nitrate. The nitrate reducing system is characterized by substrate saturation kinetics. Oxotransfer to and from substrate has been coupled to produce a catalytic system, NO3- + PPh3 --> NO2- + OPPh3, where NO3- is the substrate for dissimilatory nitrate reductase. The corresponding chloro complex, [Et4N][MoIV(Cl)(PPh3)(mnt)2].CH2Cl2 (2), responds to similar PPh3 dissociation but is unable to react with nitrate, showing the indispensable role of thiolate coordination for such oxotransfer reaction. This investigation provides the initial demonstration of the ligand specificity in a model system similar to single point mutation involving site directed mutagenesis in this class of molybdoenzymes.  相似文献   

9.
The effect of the support (activated carbon or titanium dioxide) on the catalytic activity and selectivity to nitrogen of Pt-Sn catalysts in nitrate reduction was studied. The effects of the preparation conditions and the Pt:Sn atomic ratio were also evaluated. It was observed that the support plays an important role in nitrate reduction and that different preparation conditions lead to different catalytic activities and selectivities. Generally, the catalysts supported on activated carbon were less active but more selective to nitrogen than those supported on titanium dioxide. The monometallic Pt catalyst is active for nitrate reduction only when supported on titanium dioxide, which is explained by the involvement of the support in the reaction mechanism. The catalysts were characterized by different techniques, and significant changes on metal chemical states were observed for the different preparation conditions used. Only metallic Pt and oxidized Sn were observed at low calcination and reduction temperatures, but some metallic Sn was also present when high temperatures were used, being also possible the formation of Pt-Sn alloys.  相似文献   

10.
The enzyme-catalysed reduction of nitrate was studied utilising Aspergillus niger nitrate reductase (NR) and phenosafranin in solution as the enzyme regenerator, working at lower potentials than that of the more common methyl viologen mediator. Cyclic voltammograms when enzyme, phenosafranin and substrate were together put in evidence the enzyme-catalysed reduction of nitrate, although with a relatively slow kinetics. From slope values not dependent on mediator concentration, the apparent Michaelis-Menten constant was evaluated. Analytical parameters for the enzyme-modified electrode in the presence of phenosafranin for the determination of nitrate content in water were assessed, including a recovery assay for nitrate added to a river water sample. The stability of the electrode was checked.  相似文献   

11.
The electrochemical characteristics of diethyltin dichloride on a platinum electrode were studied by cyclic voltammetry, rotating disk electrode and other methods. The results show that Et2SnCl2 can catalyze the reduction of nitrate and nitrite. The over-potential for the reduction of nitrate and nitrite on the modified electrode dropped significantly. The catalytic kinetics of the electrode were also studied. The proposed method can be used to determine nitrate and nitrite simultaneously in waste water.Received July 27, 2002; accepted March 10, 2003 Published online July 16, 2003  相似文献   

12.
The reaction of sodium nitrite with sodium dithionite was studied in the presence of cobalt(II) tetrasulfophthalocyanine, COII(TSPc)4-, in aqueous alkaline solution. The overall mechanism comprises the reduction of CoII(TSPc)4- by dithionite, followed by the formation of an intermediate complex between COI(TSPc)5- and nitrite, which undergoes two parallel subsequent reactions with and without nitrite as a reagent. Kinetic parameters for the different reaction steps of the catalytic process were determined. The final product of the reaction was found to be ammonia. Contrary to those found for the catalytic reduction of nitrite, the products of the catalytic reduction of nitrate were found to be dinitrogen and nitrous oxide. The possible catalytic reduction of nitrous oxide was confirmed by independent experiments. The striking differences in the reduction products of nitrite and nitrate are explained in terms of different structures of the intermediate complex between CoI(TSPc)5- and substrate, in which nitrite and nitrate are suggested to coordinate via nitrogen and oxygen, respectively.  相似文献   

13.
A new catalytic spectrophotometric method is reported for the simultaneous determination of nitrite and nitrate by flow injection analysis, based on the catalytic effect of nitrite on the redox reaction between pyrogallolsulfonephthalein and potassium bromate in acidic media. Nitrate can also be on-line reduced to nitrite with a modified copper-coated cadmium reduction column. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of pyrogallolsulfonephthalein at 465 nm. Various analytical parameters such as effects of acidity, reagent concentrations, flow rates, sample sizes, lengths of the reaction coil and temperatures were studied and were optimized. Under the optimized conditions, the calibration graph was linear for 2.4 to 160 ng ml(-1) of nitrite and 4.0 to 100 ng ml(-1) of nitrate. The influences of potential interfering cations and anions for nitrite and nitrate determination were studied. The method is successfully applied for food and water samples. Up to ten samples can be analyzed per hour.  相似文献   

14.
近年来,地下水中硝酸盐污染日益严重。催化加氢还原硝酸盐生成氮气具有高效、无二次污染等特点,是一种应用前景良好的脱氮技术。本文结合国内外最新的研究进展,对硝酸盐和亚硝酸盐的催化加氢脱氮进行了综述,并对该领域的研究进行了展望。  相似文献   

15.
A catalytic asymmetric amination with a lanthanum/amide complex was significantly improved. The use of lanthanum nitrate hydrate in place of lanthanum triisopropoxide made the process reproducible, scalable, and cost-effective. The development of a ternary catalytic system of La/ligand/amine was a key to high ee and catalytic turnover. A 100 g scale reaction was performed to showcase a practical synthesis of a key intermediate for AS-3201, a highly potent aldose reductase inhibitor.  相似文献   

16.
Complexes analogous to the active site of dissimilatory nitrate reductase from Desulfovibrio desulfuricans are synthesized. The hexacoordinated complexes [PPh 4][Mo (IV)(PPh 3)(SR)(mnt) 2] (R = -CH 2CH 3 ( 1), -CH 2Ph ( 2)) released PPh 3 in solution to generate the active model cofactor, {Mo (IV)(SR)(mnt) 2} (1-), ready with a site for nitrate binding. Kinetics for nitrate reduction by the complexes 1 and 2 followed Michaelis-Menten saturation kinetics with a faster rate in the case of 1 ( V Max = 3.2 x 10 (-2) s (-1), K M = 2.3 x 10 (-4) M) than that reported earlier ( V Max = 4.2 x 10 (-3) s (-1), K M = 4.3 x 10 (-4) M) ( Majumdar, A. ; Pal, K. ; Sarkar, S. J. Am. Chem. Soc. 2006, 128, 4196- 4197 ). The oxidized molybdenum species may be reduced back by PPh 3 to the starting complex, and a catalytic cycle involving [Bu 4N][NO 3] and PPh 3 as the oxidizing and reducing substrates, respectively, is established with the complexes 1 and 2. Isostructural complexes, [Et 4N][Mo (IV)(PPh 3)(X)(mnt) 2] (X = -Br ( 3), -I ( 4)) did not show any reductive activity toward nitrate. The selectivity of the thiolate ligand for the functional activity and the cessation of such activity in isostructural halo complexes demonstrate the necessity of thiolate coordination. Electrochemical data of all these complexes correlate the ability of the thiolated species for such oxotransfer activity. Compounds 1 and 2 are capable of reducing substrates like TMANO or DMSO, but after the initial 15-20% conversion, the product trimethylamine or dimethylsulfide formed interacts with the active parent complexes 1 and 2 thereby slowing down further oxo-transfer reaction similar to feedback type reactions. From the functional nitrate reduction, the molybdenum species finally reacts with the nitrite formed leading to nitrosylation similar to the NO evolution reaction by periplasmic nitrate reductase from Pseudomonas dentrificans. All these complexes ( 1- 4) are characterized structurally by X-ray, elemental analysis, electrochemistry, electronic, FT-IR, mass and (31)P NMR spectroscopic measurements.  相似文献   

17.
A simple method for accurate determination of nitrite and nitrate in serum was proposed to avoid the variation of nitrate reduction. For nitrite determination, serum samples were directly precipitated with methanol pre‐nitrate conversion, and then the supernatant reacted with 2,3‐diaminonaphthalene (DAN) to form 2,3‐naphthotriazole (NAT), which was quantitatively analyzed by high‐performance liquid chromatography coupled with fluorescence detection (HPLC‐FL). For nitrate determination, samples were firstly heated at 70°C for 10 min to inactivate endogenous reductase‐inhibiting proteins, then nitrate in the samples was quantitatively reduced to nitrite by reductase added experimentally. The difference in total nitrite concentrations between pre‐ and post‐nitrate conversion was used to calculate the amount of nitrate in the samples. In addition to good specificity, high sensitivity, satisfactory accuracy and reproducibility, our method is simple and suitable for the quantitative determination of nanomolar level of nitrite and nitrate in a large number of serum samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Magnetic switching of redox reactions and bioelectrocatalytic transformations is accomplished in the presence of relay-functionalized magnetite particles (Fe(3)O(4)). The electrochemistry of a naphthoquinone (1), pyrroloquinoline quinone (2; PQQ), microperoxidase-11 (3), a ferrocene derivative (4) and a bipyridinium derivative (5), functionalized magnetic particles, is switched "ON" and "OFF" by an external magnet upon the attraction of the magnetic particles to an electrode or their retraction from the electrode, respectively. The magneto-switchable activation and deactivation of the electrochemical oxidation of the ferrocene-functionalized magnetic particles and the electrochemical reduction of the bipyridinium-functionalized magnetic particles are used for the triggering of mediated bioelectrocatalytic oxidation of glucose, in the presence of glucose oxidase (GOx), and bioelectrocatalytic reduction of nitrate (NO(3) (-)), in the presence of nitrate reductase (NR), respectively. Magnetic particles functionalized with a PQQ-NAD(+) dyad are used for the magnetic switching of the bioelectrocatalytic oxidation of lactate in the presence of lactate dehydrogenase (LDH). The coupling of these particles with a ferrocene-monolayer-functionalized electrode allows the dual and selective sensing of lactate and glucose in the presence of LDH and GOx, respectively, by using an external magnet to switch the detection mode.  相似文献   

19.
Protein film voltammetry has been employed to define multiple catalytic consequences of proton coupled electron transfer (PCET) in a cytochrome c nitrite reductase. Current-potential profiles reflecting the steady-state rate of nitrite-limited reduction have been defined from pH 4 to 8. Lowering the electrode potential at pH 8 causes the catalytic current to increase and then decrease before it takes a value independent of any further lowering of electrode potential. By comparison, at pH 4, catalysis is initiated at more positive electrode potentials in an approximately sigmoidal fashion with no attenuation of the catalytic rate evident at more negative electrode potentials. The results show that activity is turned on by the coupled transfer of two electrons and one proton to the enzyme. The decreased rate of catalysis at lower electrode potentials under more alkaline conditions shows that this rate attenuation occurs only when reduction is not coupled to compensating protonation(s) of the enzyme. Sites within the enzyme whose reduction and/or protonation may contribute to the definition of these activities are discussed.  相似文献   

20.
Nitrate ion-selective electrodes were successfully applied both in stationary solutions and in flow streams as new analytical techniques for the assay of nitrate reductase activity. An ammonium-selective electrode was similarly used to measure the increase in ammonium ion concentration during the enzymatic reduction of nitrate to ammonium. Preliminary studies on a true enzyme electrode for assay of nitrate ion are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号