首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider the Cauchy problem for the generalized Korteweg-de Vries equation% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabgkGi2oaaBaaaleaacaaIXaaabeaakiaadwhacqGHRaWkcqGH% ciITdaWgaaWcbaGaamiEaaqabaGccaGGOaGaeyOeI0IaeyOaIy7aa0% baaSqaaiaadIhaaeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaeqyS% degaaOGaamyDaiabgUcaRiabgkGi2oaaBaaaleaacaWG4baabeaakm% aabmGabaWaaSaaaeaacaWG1bWaaWbaaSqabeaacqaH7oaBaaaakeaa% cqaH7oaBaaaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa!56D5!\[\partial _1 u + \partial _x ( - \partial _x^2 )^\alpha u + \partial _x \left( {\frac{{u^\lambda }}{\lambda }} \right) = 0\]where is a positive real and and integer larger than 1. We obtain the detailed large distance behaviour of the fundamental solution of the linear problem and show that for 1/2 and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabeU7aSjabg6da+iabeg7aHjabgUcaRmaalaaabaGaaG4maaqa% aiaaikdaaaGaey4kaSYaaeWaceaacqaHXoqydaahaaWcbeqaaiaaik% daaaGccqGHRaWkcaaIZaGaeqySdeMaey4kaSYaaSaaaeaacaaI1aaa% baGaaGinaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVa% GaaGOmaaaaaaa!4FF7!\[\lambda > \alpha + \frac{3}{2} + \left( {\alpha ^2 + 3\alpha + \frac{5}{4}} \right)^{1/2} \], solutions of the nonlinear equation with small initial conditions are smooth in the large and asymptotic when t± to solutions of the linear problem.  相似文献   

2.
For independent random variables X and Y, define % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabofaruWrL9MCNLwyaGqbciaa-bcacqGHHjIUcaWFGaGaa8hw% aiaa-TcacaWFzbaaaa!4551!\[{\rm{S}} \equiv X + Y\]. When the conditional expectations % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadweacaGGBbqefCuzVj3zPfgaiuGajaaqcaWFNbGccaGGOaGa% amiwaiaacMcacaGG8bGaam4uaiaac2facqGHHjIUcaWGHbGaaiikai% aadofacaGGPaaaaa!4BC4!\[E[g(X)|S] \equiv a(S)\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadweacaGGBbGaamiAaiaacIcacaWGybGaaiykaiaacYhacaWG% tbGaaiyxaiabggMi6kaadkgacaGGOaGaam4uaiaacMcaaaa!4894!\[E[h(X)|S] \equiv b(S)\]are given, then under certain assumptions, the density function of X has the form of u(x)k()eax, where u(x) is uniquely determined by the functions a(·) and b(·).  相似文献   

3.
Let G be a Lie group with Lie algebra g and a i,...,a d and algebraic basic of g. Futher, if A i=dL(ai) are the corresponding generators of left translations by G on one of the usual function spaces over G, let% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamXvP5wqonvsaeHbfv3ySLgzaGqbciab-Heaijaab2dadaaeqbqa% aiaadogadaWgaaWcbaqedmvETj2BSbacgmGae4xSdegabeaakiaadg% eadaahaaWcbeqaaiab+f7aHbaaaeaacqGFXoqycaGG6aGaaiiFaiab% +f7aHjaacYhatuuDJXwAK1uy0HMmaeXbfv3ySLgzG0uy0HgiuD3BaG% Wbbiab9rMiekaaikdaaeqaniabggHiLdaaaa!5EC1!\[H{\rm{ = }}\sum\limits_{\alpha :|\alpha | \le 2} {c_\alpha A^\alpha } \] be a second-order differential operator with real bounded coefficients c . The operator is defined to be subelliptic if% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiGacMgacaGGUbGaaiOzamXvP5wqonvsaeHbfv3ySLgzaGqbaKaz% aasacqWF7bWEcqWFTaqlkmaaqafabaGaam4yamaaBaaaleaarmWu51% MyVXgaiyWacqGFXoqyaeqaaaqaaiab+f7aHjaacQdacaGG8bGae4xS% deMaaiiFaiabg2da9iaaikdaaeqaniabggHiLdGccqWFOaakiuGacq% qFNbWzcqWFPaqkcqaH+oaEdaahaaWcbeqaamaaBaaameaacqGFXoqy% aeqaaaaakiaacUdacqqFNbWzcqGHiiIZcqqFhbWrcqqFSaalcqqFGa% aicqaH+oaEcqGHiiIZrqqtubsr4rNCHbachaGaeWxhHe6aaWbaaSqa% beaacqqFKbazcqqFNaWjcqaFaC-jaaGccaGGSaGaaiiFaiabe67a4j% aacYhacqGH9aqpjqgaGeGae8xFa0NccqGH+aGpcaaIWaGaaiOlaaaa% !7884!\[\inf \{ - \sum\limits_{\alpha :|\alpha | = 2} {c_\alpha } (g)\xi ^{_\alpha } ;g \in G, \xi \in ^{d'} ,|\xi | = \} > 0.\]We prove that if the principal coefficients {c ; ||=2} of the subelliptic operator are once left differentiable in the directions a 1,...,a d with bounded derivatives, then the operator has a family of semigroup generator extensions on the L p-spaces with respect to left Haar measure dg, or right Haar measure d, and the corresponding semigroups S are given by a positive integral kernel,% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamXvP5wqonvsaeHbfv3ySLgzaGqbaiab-HcaOGqbciab+nfatnaa% BaaaleaacaWG0baabeaaruqqYLwySbacgiGccaqFgpGae8xkaKIae8% hkaGIae43zaCMae8xkaKIae8xpa0Zaa8qeaeaacaqGKbaaleaacqGF% hbWraeqaniabgUIiYdGcceWGObGbaKaacaWGlbWaaSbaaSqaaiaads% haaeqaaOGae8hkaGIae43zaCMae43oaSJae4hAaGMae8xkaKIaa0NX% diab-HcaOiab+HgaOjab-LcaPiab-5caUaaa!5DFA!\[(S_t \phi )(g) = \int_G {\rm{d}} \hat hK_t (g;h)\phi (h).\]The semigroups are holomorphic and the kernel satisfies Gaussian upper bounds. If in addition the coefficients with ||=2 are three times differentiable and those with ||=1 are once differentiable, then the kernel also satisfies Gaussian lower bounds.Some original features of this article are the use of the following: a priori inequalities on L in Section 3, fractional operator expansions for resolvent estimates in Section 4, a parametrix method based on reduction to constant coefficient operators on the Lie group rather than the usual Euclidean space in Section 5, approximation theory of semigroups in Section 11 and time dependent perturbation theory to treat the lower order terms of H in Sections 11 and 12.  相似文献   

4.
The expression of the continuous distribution function F(x) is obtained whenever % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaerbhv2BYDwAHbacfiGaa8xBaiaabIcacaWG4bGaaiilaiaadMha% caqGPaGaa8hiaiaab2dacaWFGaGaa8xraiaa-HcacaWFybGaa8hiai% aa-XhacaWFGaGaa8hEaiaa-bcacqGHKjYOcaWFGaGaa8hwaiaa-bca% cqGHKjYOcaWFGaGaa8xEaiaa-Lcaaaa!53EE!\[m{\rm{(}}x,y{\rm{)}} {\rm{ = }} E(X | x \le X \le y)\]is known. Moreover, we obtain the necessary and sufficient conditions so that any function m: 2 is the conditional expectation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadweacaGGOaGaamiwaerbhv2BYDwAHbacfiGaa8hiaiaacYha% caWFGaGaa8hEaiaa-bcacqGHKjYOcaWFGaGaa8hwaiaa-bcacqGHKj% YOcaWFGaGaa8xEaiaacMcaaaa!4D0D!\[E(X | x \le X \le y)\]of a random variable X with continuous distribution function. Furthermore, we relate m(x,y) to order statistics.  相似文献   

5.
The well-known Ogasawara-Maeda-Vulikh representation theorem asserts that for each Archimedean vector lattice L there exists an extremally disconnected compact Hausdorff space , unique up to a homeomorphism, such that L can be represented isomorphically as an order dense vector sublattice of the universally complete vector lattice C () of all extended-real-valued continuous functions f on for which % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaacmqabaGaeqyYdCNaeyicI4SaeyyQdCLaeyOoaOJaaiiFaiab% gkzaMkabgIcaOiabgM8a3jabgMcaPiaacYhacqGH9aqpcqGHEisPai% aawUhacaGL9baaaaa!4E05!\[\left\{ {\omega \in \Omega :|f(\omega )| = \infty } \right\}\] is nowhere dense. Since the early days of using this representation it has been important to find conditions on L such that consists of bounded functions only.The aim of this short article is to present a simple complete characterization of such vector lattices.  相似文献   

6.
Spinor spaces can be represented as minimal left ideals of Clifford algebras and they are generated by primitive idempotents. Primitive idempotents of the Clifford algebras R p, q are shown to be products of mutually nonannihilating commuting idempotent % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabaGaaiaacaqabeaadaqaaqGaaO% qaamaaleaaleaacaaIXaaabaGaaGOmaaaaaaa!3DBD!\[{\textstyle{1 \over 2}}\]2}}\](1+e T ), where the k=q–r q–p basis elements e T satisfy e T 2=1. The lattice generated by a set of mutually annihilating primitive idempotents is examined. The final result characterizes all Clifford algebras R p, q with an anti-involution such that each symmetric elements is either a nilpotent or then some right multiple of it is a nonzero symmetric idempotent. This happens when p+q<-3 and (p, q)(2, 1).  相似文献   

7.
The Laplace continued fraction is derived through a power series. It provides both upper bounds and lower bounds of the normal tail probability % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqbfA6agzaaraaaaa!3DC0!\[\bar \Phi\](x), it is simple, it converges for x>0, and it is by far the best approximation for x3. The Laplace continued fraction is rederived as an extreme case of admissible bounds of the Mills' ratio, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqbfA6agzaaraaaaa!3DC0!\[\bar \Phi\](x)/(x), in the family of ratios of two polynomials subject to a monotone decreasing absolute error. However, it is not optimal at any finite x. Convergence at the origin and local optimality of a subclass of admissible bounds are investigated. A modified continued fraction is proposed. It is the sharpest tail bound of the Mills' ratio, it has a satisfactory convergence rate for x1 and it is recommended for the entire range of x if a maximum absolute error of 10-4 is required.The efforts of the author were supported by the NSERC of Canada.  相似文献   

8.
Considered are modifications of a rank test of randomness for the one- and multi-dimensional regular design cases as well as for the one- and multi-dimensional random design cases. The null hypothesis is that all observations are independent and identically distributed. The main result is the proof of consistency of the test in each of the above cases against two general alternatives.Alternative 1: there exists a pairwise disjoint partion U i =1 m D i =D, where D d1, is a bounded domain inside which one makes observations, such that (1) if an observation point falls insideD i , then the corresponding observed value is the realization of a random variable i i = l,...,m; (2) there exists an ordering % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamXvP5wqonvsaeHbfv3ySLgzaGqbaiab-Tha7jabe67a4Hqbdiab% +LgaPnaaBaaaleaacaWGRbaabeaakiab-1ha9naaDaaaleaacaWGRb% Gaeyypa0JaaGymaaqaaiaad2gaaaaaaa!4C2D!\[\{ \xi i_k \} _{k = 1}^m \], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabe67a4nXvP5wqonvsaeHbfv3ySLgzaGqbdiab-LgaPnaaBaaa% leaacaWGRbaabeaaaaa!454D!\[\xi i_k \] is stochastically smaller than % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabe67a4nXvP5wqonvsaeHbfv3ySLgzaGqbdiab-LgaPnaaBaaa% leaacaWGRbaabeaakmaaBaaaleaacqGHRaWkcaaIXaaabeaakiaacY% cacaWGRbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGG% SaGaamyBaiabgkHiTiaaigdaaaa!509B!\[\xi i_k _{ + 1} ,k = 1,...,m - 1\], (3) the partition is independent of the number of observation points. Note thatm, this ordering, and the sets D i are not known a priori: one tests only for the existence of such a partition. Note also that in the one-dimensional case the initial sequence need not be stochastically monotone under the alternative.Alternative 2: there exists an arbitrary asymptotically continuous trend in location. Asymptotically continuous means that the trend converges to some continuous, not identically constant function as the number of data points goes to infinity. This function need not be monotone.A numerical example illustrating the use of the obtained results for image analysis (edge detection) is presented.  相似文献   

9.
This paper considers the asymptotic properties of two kernel estimates % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\], which have been proposed by Bhattacharyya et al. (1988, Comm. Statist. Theory Methods, A17, 3629–3644) and Jones (1991, Biometrika, 78, 511–519), respectively, for estimating the underlying density f at a point under a general selection biased model. The asymptotic optimality of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]is measured by the corresponding asymptotic minimax mean squared errors under a compactly supported Lipschitz continuous family of the underlying densities. It is shown that, in general, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is a superior local estimate than % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]in the sense that the asymptotic minimax risk of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is lower than that of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]. The minimax kernels and bandwidths of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]are computed explicity and shown to have simple forms and depend on the weight functions of the model.  相似文献   

10.
The additive renormalization% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabs7adaWgaaWcbaGaaeySdiaab6cacaqG0bqefeKCPfgBaGqb% diaa-bcaaeqaaOGaeyypa0Jaa8hiaiaacIcacaaIYaGaeqiWdaNaai% ykamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaGqadOGa% a4hiaiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcaqGXoWaaWbaaS% qabeaacaqGYaaaaOGaai4laiaaikdacaGGPaGaa4hiaiaacQdaciGG% LbGaaiiEaiaacchacqGHXcqSdaWadiqaaiabgkHiTiaadkeacaGGNa% GaaiikaiaadshacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaai4laiaa% ikdacaGFGaGaey4kaSIaa4hiaiaabg7acaWGcbGaai4jaiaacIcaca% WG0bGaaiykaaGaay5waiaaw2faaiaacQdaaaa!6C5C!\[{\rm{\delta }}_{{\rm{\alpha }}{\rm{.t}} } = (2\pi )^{ - 1/2} \exp ( - {\rm{\alpha }}^{\rm{2}} /2) :\exp \pm \left[ { - B'(t)^2 /2 + {\rm{\alpha }}B'(t)} \right]:\]is shown to be a generalized Brownian functional. Some of its properties are derived. is shown to be a generalized Brownian functional. Some of its properties are derived.On leave from Universidade do Minho, Area de Matematica, Largo Carlos Amarante, P-4700 Braga, Portugal.  相似文献   

11.
Let X t, t= ..., \s-1,0,1,... be a strietly stationary sequence of random variables (r.v.'s) defined on a probability space (,P) and taking values in R d.Let X 1,...,X nbe n consecutive observations of X t.Let f be the density of X 1.As an estimator of f(x), we shall consider % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaaiaacaqabeaadaqaaqGaaO% qaaiqadAgagaqcamaaBaaaleaacaWGUbaabeaakiaacIcacaWG4bGa% aiykaiabg2da9iaad6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGcda% aeWbqaaiaadkgadaWgaaWcbaGaamOAaaqabaGcdaahaaWcbeqaaiab% gkHiTiaadsgaaaGccaWGlbGaaiikaiaacIcacaWG4bGaeyOeI0Iaam% iwamaaBaaaleaacaWGQbaabeaakiaacMcacaGGVaGaamOyamaaBaaa% leaacaWGQbaabeaakiaacMcaaSqaaiaadQgacqGH9aqpcaaIXaaaba% GaamOBaaqdcqGHris5aaaa!58A9!\[\hat f_n (x) = n^{ - 1} \sum\limits_{j = 1}^n {b_j ^{ - d} K((x - X_j )/b_j )} \]. Here K is a kernel function and b nis a esquence of bandwidths tending to zero as n . The asymptotic distribution and uniform convergence of f n are obtained under general conditions. Appropriate bandwidths are given explicitly. The process X tis assumed to satisfy a weak dependence condition defined in terms of joint densities. The results are applicable to a large class of time series models.  相似文献   

12.
A direct method for multistep prediction of a stationary time series involves fitting, by linear regression, a different autoregression for each lead time, h, and to select the order to be fitted, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaaiaacaqabeaadaqaaqGaaO% qaaiqadUgagaacamaaBaaaleaacaWGObaabeaaaaa!3E44!\[\tilde k_h\], from the data. By contrast, a more usual plug-in method involves the least-squares fitting of an initial k-th order autoregression, with k itself selected by an order selection criterion. A bound for the mean squared error of prediction of the direct method is derived and employed for defining an asymptotically efficient order selection for h-step prediction, h > 1; the S h(k) criterion of Shibata (1980) is asymptotically efficient according to this definition. A bound for the mean squared error of prediction of the plug-in method is also derived and used for a comparison of these two alternative methods of multistep prediction. Examples illustrating the results are given.  相似文献   

13.
In general, the regressor variables are stochastic, Duan and Li (1987, J. Econometrics, 35, 25–35), Li and Duan (1989, Ann. Statist., 17, 1009–1052) have been shown that under very general design conditions, the least squares method can still be useful in estimating the scaled regression coefficients of the semi-parametric model Y i =Q 1(+X i ; i , i+ 1,2,...,n. Here is a constant, is a 1×p row vector, X i is a p×1 column vector of explanatory variables, i is an unobserved random error and Q 1 is an arbitrary unknown function. When the data set (X i , Y i ),i=1, 2, ..., n, contains one or several outliers, the least squares method can not provide a consistent estimator of the scaled coefficients . Therefore, we suggest the fuzzy weighted least squares method to estimate the scaled coefficients for the data set with one or several outliers. It will be shown that the proposed fuzzy weighted least squares estimators are % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaakaaabaGaamOBaaWcbeaaaaa!3D3C!\[\sqrt n \] and asymptotically normal under very general design condition. Consistent measurement of the precision for the estimator is also given. Moreover, a limited Monte Carlo simulation and an example are used to study the practical performance of the procedures.This research partially supported by the National Science Council, R.O.C.  相似文献   

14.
It is well known that for a large class of Markov process the associated semi-group T(t)f(x)=f(y)P(t,x;dy) satisfies the Kolmogorov backward differential equation, that is, if u(t,x)=T(t)f(x) then and .In this paper we are considering the opposite problem: given the diffusion and drift coefficients we study the differentiability preserving properties of the semigroup T(t) having as infinitesimal generator .More specifically, for a large class of functions a(x) and b(x), we will prove for k=0, ..., 3 the existence of T(t) such that T(t): C k (I) C k (I) and the existence of a constant k such that |T(t)f| k |f| k exp ( k t) for fC k (I). Moreover an explicit expression of k in terms of the coefficients a(x) and b(x) is obtained. As a side result we obtain the necessity of the boundary conditions imposed.This paper is a revised version of the author's Ph. D. dissertation at University of Massachusetts under W. Rosenkrantz  相似文献   

15.
The noncharacteristic Cauchy problem for the heat equation:% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadwhadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaadIha% caGGSaGaamiDaiaacMcacqGH9aqpcaWG1bWaaSbaaSqaaiaadshaae% qaaOGaaiikaiaadIhacaGGSaGaamiDaiaacMcacaGGSaqefeKCPfgB% aGqbbiaa-bcacaaIWaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDOb% cv39gaiyqacqGFKjcHcaWG4bGae4hzIqOae4ha3hJaaeymaiaabYca% caqGTaGaeuOhIuQaeuipaWJaaeiDaiabfYda8iabf6HiLkaacYcaca% WG1bGaaiikaiaaicdacaGGSaGaamiDaiaacMcacqGH9aqpcqqHvpGA% caGGOaGaamiDaiaacMcacaGGSaGaamyDamaaBaaaleaacaWG4baabe% aakiaacIcacaaIWaGaaiilaiaadshacaGGPaGaeyypa0JaaGiYdiaa% cIcacaWG0bGaaiykaiaacYcacaWFGaGaeuOhIuQaeuipaWJaamiDai% abfYda8iabf6HiLcaa!82F8!\[u_{xx} (x,t) = u_t (x,t), 0 \le x \le {\rm{1, - }}\infty < {\rm{t}} < \infty ,u(0,t) = \varphi (t),u_x (0,t) = \psi (t), \infty < t < \infty \]is considered. This problem is well-known to be ill-posed. The well-posedness class of the problem is described and some approximation schemes are proposed. For the case of inexactly given data, a mollification method is suggested.  相似文献   

16.
Let F pxp have the multivariate F-distribution with a scale matrix and degrees of freedom n 1and n 2. In this paper the problem of estimating eigenvalues of is considered. By constructing the improved orthogonally invariant estimators % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbiaeaacqqHuoaraSqabeaacaqGEbaaaOGaaiikaiaadAeacaGG% Paaaaa!402A!\[\mathop \Delta \limits^{\rm{\^}} (F)\] of , which are analogous to Haff-type estimators of a normal covariance matrix, new estimators of eigenvalues of are given. This is because the eigenvalues of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbiaeaacqqHuoaraSqabeaacaqGEbaaaOGaaiikaiaadAeacaGG% Paaaaa!402A!\[\mathop \Delta \limits^{\rm{\^}} (F)\] are taken as estimates of the eigenvalues of .  相似文献   

17.
In this note we consider the Gross-Pitaevskii equation i t ++(1–2)=0, where is a complex-valued function defined on N×, and study the following 2-parameters family of solitary waves: (x, t)=e it v(x 1ct, x), where and x denotes the vector of the last N–1 variables in N . We prove that every distribution solution , of the considered form, satisfies the following universal (and sharp) L -bound:
This bound has two consequences. The first one is that is smooth and the second one is that a solution 0 exists, if and only if . We also prove a non-existence result for some solitary waves having finite energy. Some more general nonlinear Schrödinger equations are considered in the third and last section. The proof of our theorems is based on previous results of the author ([7]) concerning the Ginzburg-Landau system of equations in N .Received May 31, 2002 Published online February 7, 2003  相似文献   

18.
Let X: p × 1, Y: p × 1 be independently and normally distributed p-vectors with unknown means 1, 2 and unknown covariance matrices 1, 2 (>0) respectively. We shall show that Pillai's test, which is locally best invariant, is locally minimax for testing H 0: 1=2 against the alternative H 1: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaaeiDaiaabkhacaqGOaWaaabmaeaadaaeqaqaaiabgkHiTiaadMea% caGGPaGaaiiiaiabg2da9iaacccacqaHdpWCcaGGGaGaeyOpa4Jaai% iiaiaaicdaaSqaaiaaigdaaeqaniabggHiLdaaleaacaqGYaaabaGa% aeylaiaabgdaa0GaeyyeIuoaaaa!4E3F!\[{\rm{tr(}}\sum\nolimits_{\rm{2}}^{{\rm{ - 1}}} {\sum\nolimits_1 { - I) = \sigma > 0} }\]as 0. However this test is not of type D among G-invariant tests.Research supported by the Canadian N.S.E.R.C. Grant.  相似文献   

19.
Summary LetG be ad-dimensional bounded Euclidean domain, H1 (G) the set off in L2(G) such that f (defined in the distribution sense) is in L2(G). Reflecting diffusion processes associated with the Dirichlet spaces (H1(G), ) on L2(G, dx) are considered in this paper, where A=(aij is a symmetric, bounded, uniformly ellipticd×d matrix-valued function such thata ij H1(G) for eachi,j, and H1(G) is a positive bounded function onG which is bounded away from zero. A Skorokhod decomposition is derived for the continuous reflecting Markov processes associated with (H1(G), ) having starting points inG under a mild condition which is satisfied when G has finite (d–1)-dimensional lower Minkowski content.  相似文献   

20.
In this paper we show that the local time of the Brownian motion belongs to the Sobolev space for any p2 and 0<<1/p. In order to prove this result we first discuss the smoothness and integrability properties of the composition of the Dirac function with a Wiener integral W(h), and we show that this composition belongs to , for any >0 and p>1 such that +1/p>1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号