首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用第一原理方法计算了O2分子在 Mo(001) 表面的吸附,得到了吸附构型的各种参数,并且计算了O2分子在 Mo(001) 表面4个位置(顶位,桥位,穴位垂直,穴位平行)吸附后的能量,结果表明在顶位吸附能最高。通过对O2分子在 Mo(001) 表面吸附的原子轨道电荷分布与态密度图的分析可以看出在吸附过程中主要是O原子的2p轨道电子与钼的4s和4d轨道电子的相互作用。  相似文献   

2.
建立了一种计算Si(001)-(2×2×1):H表面O2吸附的理论模型.在周期性边界条件下,采用基于密度泛函理论广义梯度近似的超软赝势法对Si(001)-(2×2×1):H表面O2吸附进行了第一性研究.通过占位能的计算,得到了Si(001)-(2×2×1):H表面O2的最佳吸附位置.计算结果表明吸附后的反应产物应为Si=O和H2O,从理论上支持了D.Kovalev等人提出反应机制.  相似文献   

3.
基于密度泛函理论第一性原理方法,研究了CH_4和H_2O在CaCO_3(010)面上各高对称位的吸附情况,优化了CH_4与H_2O在T位、 B位和H位的吸附模型结构,计算了其在各高对称位的吸附能,并对其各自最稳定的吸附位吸附前后的物理结构和电子态密度进行了对比分析.结果表明:CH_4、 H_2O分子分别在LBⅢ位、 SBⅢ位最稳定,吸附能分别为-0.405 eV、-0.138 eV,是一种物理吸附,吸附前后键长键角的变化较小,表现为亲气;吸附后CH_4和H_2O的态密度曲线整体向低能量区偏移约7.5 eV、 5eV,吸附后CH_4和H_2O结构都更加稳定,吸附作用对CH_4和H_2O分子的电子结构影响显著.  相似文献   

4.
利用密度泛函理论研究了0.25单层(ML),0.5ML,0.75ML和1ML吸附率下H2O在SrTiO3-(001)TiO2表面上的吸附行为.比较了不同吸附率下分子吸附和解离吸附的稳定性,利用微动弹性带(nudged elastic band)方法计算了H2O的解离势垒.结果表明:在低吸附率(0.25ML和0.5ML)时,H2O表现为解离吸附;在0.75ML吸附率下,分子吸附和解离吸附同时存在;而在全吸附(吸附率为1ML)时,分子吸附更稳定.基于对H2O分子与表面之间以及H2O分子之间的电荷转移和相互作用的分析,讨论了吸附率对H2O吸附和解离的影响.  相似文献   

5.
用投影子缀加波和CP分子动力学方法研究了贵金属Cu(001)面的表面结构、弛豫以及O原子的c(2×2)吸附状态. 研究结果得出在这种吸附结构中,O原子与衬底Cu原子之间的垂 直距离约为0069nm,Cu—O键长为0.194nm,功函数约为5.29 eV;吸附O原子形成金属性能带结构,由于Cu—O的杂化作用,在费米能以下约6.7 eV处出现了局域的表面态.用Tersoff-Hamann途径计算了该表面的扫描隧道显微镜图像,并讨论了与实验结果之 间的关系. 关键词: Cu(001)-c(2×2)/O 电子态 STM图像  相似文献   

6.
于洋  徐力方  顾长志 《物理学报》2004,53(8):2710-2714
采用第一性原理方法研究氢吸附的金刚石(001)表面,计算了氢吸附金刚石表面构型.通过分析吸附前后空间电荷分布的变化,发现吸附H原子的金刚石(001)表面电荷向H原子转移,即表明氢吸附的金刚石表面带负电.分析了这种现象的微观机制,以及它对金刚石表面电学性质的影响. 关键词: 第一性原理计算 金刚石(001)面 表面吸附 电荷密度分布  相似文献   

7.
朱玥  李永成  王福合 《物理学报》2016,65(5):56801-056801
本文利用基于密度泛函理论的第一性原理分别研究了MgH2(001)表面H原子扩散形成H2分子释放出去的可能路径及金属Li原子掺杂对其影响. 研究结果表明: 干净MgH2(001)表面第一层释放H原子形成H2分子有两种可能路径, 其释放能垒分别为2.29和2.50 eV; 当将Li原子替代Mg原子时, 两种H原子扩散释放路径的能垒分别降到了0.31和0.22 eV, 由此表明Li原子掺杂使MgH2(001)表面H原子扩散形成H2释放更加容易.  相似文献   

8.
采用基于平面波基组的Vienna Ab-initio Simulations Package (VASP)程序研究了SO_2和NO_2在γ-Al_2O_3(110)表面和羟基化γ-Al_2O_3(110)表面的吸附,获得了SO_2和NO_2吸附的不同构型和结构参数.对吸附能,电荷转移,差分电荷密度和投影态密度等进行分析和讨论.对比发现,在γ-Al_2O_3(110)表面SO_2的吸附能力强于NO_2.SO_2或NO_2在非羟基化γ-Al_2O_3(110)表面吸附时O原子的2p轨道和Al原子的3s3p轨道作用形成O-Al键,且SO_2吸附时键结强度高于NO_2.NO_2吸附时费米能级以下有部分反键态,削弱了与γ-Al_2O_3(110)表面相互作用.在羟基化γ-Al_2O_3(110)表面SO_2或NO_2的吸附能力会低于非羟基化表面,但是SO_2的吸附能力依旧强于NO_2.计算结果说明SO_2与γ-Al_2O_3(110)表面的相互作用强于NO_2.以上研究,将有助于理解SO_2和NO_2在γ-Al_2O_3的反应性,为进一步研究它们的非均相转化和在灰霾形成中的促进作用奠定基础.  相似文献   

9.
基于密度泛函理论的第一性原理方法模拟研究H_2O在CaCO_3(104)表面的吸附特征.首先,研究H_2O分子在CaCO_3(104)表面的顶位、桥位(短桥位、长桥位)和穴位上垂直和平行表面两种类型下的8种高对称吸附结构模型,结合吸附能和稳定吸附构象确定最优吸附位.而后,基于H_2O/CaCO_3(104)最优吸附结构模型,研究吸附前后H_2O和CaCO_3(104)表面的物理结构、电子结构(Mulliken电荷布居数、态密度、电子局域函数)的特征,分析H_2O/CaCO_3(104)表面之间的相互作用以及成键机理.研究结果:吸附能和体系稳定构象显示H_2O分子/CaCO_3(104)表面的最稳定吸附结构为穴位-平行.在穴位-平行位吸附后,H_2O分子的O-H键长和H-O-H键角均发生改变; CaCO_3晶体平行和垂直(104)表面方向上原子位置均发生改变,表面层变化最大;即吸附作用对H_2O分子和CaCO_3晶体的物理结构均产生较大影响; H_2O/CaCO3(104)最优吸附体系的Mulliken电荷布居数、电子态密度、电子局域函数的研究均说明H_2O分子与CaCO3(104)之间存在电子的转移形成化学键.其中,Ca-O(H_2O)形成离子键,H(H_2O)-O(CaCO_3)之间存在氢键作用.本文研究揭示了方解石表面水湿性的原因,同时为方解石润湿性的深入研究奠定基础.  相似文献   

10.
本文采用密度泛函理论,结合周期性平板模型,通过对原子H、N、O、S和C,分子CO、N2、NH3、NO,以及自由基CH3、CH、CH2、OH在Ni(100)表面吸附的研究,比较了它们的吸附能,稳定吸附位点,吸附结构及扩散能垒等信息. 这些吸附质与表面结合能力从小到大依次是N2相似文献   

11.
采用了第一性原理研究了H2S在Cr(111)面的吸附解离过程,利用吸附能、吸附构型和偏态密度图(PDOS)研究了H2S及其解离产物在Cr(111)面上的吸附情况,都偏向倾斜吸附在Cr(111)面.同时研究了HS/H和S/H共吸附情况,得到共吸附物质在Cr(111)面上有明显的相互作用.最后使用线性同步和二次同步变换方法确定了解离反应的过渡态,了解到第一、二步解离的活化能分别为1.65 eV、0.82 eV,H2S分子在Cr(111)面上的解离过程是放热反应,反应能为-2.90 eV.  相似文献   

12.
本文利用第一性原理研究了C-Nb共掺杂的SnO_2稳定性、能带结构与态密度,从自旋向上和自旋向下的能带结构以及态密度分析了掺杂体系磁性产生的机理.研究结果表明,C-Nb共掺杂SnO_2体系的稳定性强于C,Nb单掺杂SnO_2体系;C,Nb单掺杂、C-Nb共掺杂的SnO_2体系的总磁矩分别为0μB、0.922μB、1.0μB;Nb掺杂SnO_2体系产生磁性在于Nb的d轨道引入,C-Nb共掺杂SnO_2体系产生磁性在于Nb的s轨道和C的p轨道相互作用.  相似文献   

13.
Theoretical study of ZnO adsorption and bonding on Al_2O_3(0001) surface   总被引:1,自引:0,他引:1  
Sapphire (α-Al2O3) and silicon (Si) are widely applied as the substrates of the highquality ZnO thin films prepared by pulse laser deposition (PLD) and molecule beamepitaxy (MBE) technology. The adhesion, diffusivity, and bonding of the particles on thesubstrates play a significant role in the forming and initial growing of nucleation for filmgrowth, and directly influence the quality of the entire thin films[1]. No sufficient studiesand experiments are available on the surface atomic str…  相似文献   

14.
姜平国  汪正兵  闫永播 《物理学报》2017,66(8):86801-086801
采用基于密度泛函理论的第一性原理平面波超软赝势方法,在广义梯度近似下,研究了立方WO_3,WO_3(001)表面结构及其氢吸附机理.计算结果表明立方晶体WO_3理论带隙宽度为0.587 eV.WO_3(001)表面有WO终止(001)表面和O终止(001)表面两种结构,表面结构优化后W—O键长和W—O—W键角改变,从而实现表面弛豫;WO终止(001)表面和O终止(001)表面分别呈现n型半导体特征和p型半导体特征.分别计算了H原子吸附在WO终止(001)表面和O终止(001)表面的H—O_(2c)—H,H—O_(2c)…H—O_(2c),H—O_(1c)—H和H—O_(1c)…H—O_(1c)四种吸附构型,其中H—O_(1c)—H吸附构型的吸附能最小,H—O键最短,H失去电子数最多,分别为-3.684 eV,0.0968 nm和0.55e,此吸附构型最稳定.分析其吸附前后的态密度,带隙从吸附前的0.624 eV增加到1.004 eV,价带宽度基本不变.H的1s轨道电子与O的2p,2s轨道电子相互作用,在-8和-20 eV附近各形成了一个较强的孤立电子峰,两个H原子分别与一个O_(1c)原子形成化学键,最终吸附反应生成了一个H_2O分子,同时产生了一个表面氧空位.  相似文献   

15.
运用第一原理密度泛函理论方法,首先计算了MoSi_2各清洁表面的表面能,(001)Si-|-Si断面具有较低的表面能,是MoSi_2最可能的解理面;通过生成能及键布居分析研究了单氧原子、双氧原子及氧分子在(001)Si-|-Si断面的吸附行为,发现单氧原子在空位处吸附最稳定,此时O极易与Si结合,得到的Si-O-Si键长及键角与SiO_2的非常接近,表明低浓度下O极易与表面的Si结合生成SiO_2;双氧原子发生空位+顶位吸附时O原子除与Si有强作用外,可与Mo有一定相互作用;氧分子以平行的方式接近空位最有利于吸附,此时氧分子最易分解为氧原子,发生氧原子在空位的吸附.  相似文献   

16.
李磊  李丹  刘世勇  赵翼 《计算物理》2010,27(2):293-298
利用第一性原理计算Mn在ZnS(001)表面上几种掺杂位置的形成能、局域分波态密度和磁矩.对Mn在ZnS(001)表面上的三种位置的形成能进行比较,得到两种填隙位置是非常稳定的掺杂位置.分析ZnS(001):Mn各种再构表面的电子态密度和电荷密度分布.结果表明,三种表面模型中,自旋向上的Mn原子的3d态和近邻S原子的3p态都有一定的杂化,并且替代掺杂的Mn和邻近S原子的p-d杂化最明显,形成的共价键最强.而自旋向下的Mn原子的3d态比较局域,受S原子的3p态影响较小.计算了三种掺杂表面的磁矩,并分析计算结果.  相似文献   

17.
本文采用第一性原理计算首先研究了Ti3C2O2和V2CO2与CH4气体分子之间的相互作用,发现Ti3C2O2和V2CO2对CH4的吸附较弱属于物理吸附,不适宜用作探测CH4。在此基础上研究了电荷调控下CH4气体分子与Ti3C2O2和V2CO2之间的相互作用。结果表明:随着体系电荷态的增加,Ti3C2O2和V2CO2对CH4气体分子的吸附作用逐渐增加变为化学吸附。当体系电荷态大于或等于-2时,CH4气体分子在Ti3C2O2和V2CO2表面可以被有效捕获。撤去电荷后,Ti3C2O2、V2CO2与CH4气体分子之间的吸附恢复至物理吸附,CH4气体分子易脱附。因此,通过调控Ti3C2O2和V2CO2的电荷态,可以简单地实现CH4的捕获与释放。Ti3C2O2和V2CO2有望成为CH4探测或捕获材料。  相似文献   

18.
以芥子气和沙林为代表的毒剂具有毒性强、扩散快的特点,是一类杀伤力强、难以防护的化学战剂,对其快速高效检测是一项具有挑战性的课题.本文基于第一性原理计算方法研究了V掺杂对二维MoS_2气敏性能影响的机理,发现V原子向二维MoS_2的掺杂过程为自发的放热反应, V原子可以稳定掺杂于二维MoS_2超胞结构中的S空位上.掺杂进入二维MoS_2体系的V原子作为施主中心向周围Mo原子给出电子,从而提高了材料的导电能力.吸附能、吸附距离和吸附过程中的电子转移计算结果表明V的掺杂提高了二维MoS_2对气体分子的吸附能力,增强了吸附质分子与基底表面的电子相互作用,从而提高了二维MoS_2的气敏性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号