首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes U2DE, a finite-volume code that numerically solves the Euler equations. The code was used to perform multi-dimensional simulations of the gradual opening of a primary diaphragm in a shock tube. From the simulations, the speed of the developing shock wave was recorded and compared with other estimates. The ability of U2DE to compute shock speed was confirmed by comparing numerical results with the analytic solution for an ideal shock tube. For high initial pressure ratios across the diaphragm, previous experiments have shown that the measured shock speed can exceed the shock speed predicted by one-dimensional models. The shock speeds computed with the present multi-dimensional simulation were higher than those estimated by previous one-dimensional models and, thus, were closer to the experimental measurements. This indicates that multi-dimensional flow effects were partly responsible for the relatively high shock speeds measured in the experiments. Received 15 November 1996 / Accepted 3 February 1997  相似文献   

2.
Rarefied gas flow with a centered isentropic compression wave is investigated using direct Monte Carlo simulation of the solution of the Boltzmann equation. For monatomic gas flow the pattern of formation of a suspended compression shock near the geometric center of the compression wave is considered. The flow pattern is compared with the results obtained within the framework of gas dynamics. For a diatomic gas the interference of a centered compression wave with the bow shock ahead of a cylinder is investigated. The dependence of the pressure and the heat transfer to the surface on the Reynolds number and the wave center position relative to the cylinder center is analyzed. The results are compared with those of numerical simulation of the Euler and boundary-layer equations.  相似文献   

3.
采用间断有限元方法对环形激波在圆柱形激波管内绕射、反射和聚焦流场进行了数值模拟。将二维守恒方程的间断有限元方法发展到轴对称Euler方程,并对环形激波绕后台阶流动进行了数值计算。计算结果表明,采用间断有限元方法能够有效地捕捉运动激波在圆柱形激波管内传播的复杂流场结构;在聚焦点附近,数值解具有较大的梯度变化,表明该方法对间断解具有较强的捕捉能力,在聚焦点附近不会产生振荡或抹平间断现象。  相似文献   

4.
The solution of the ideal gasdynamic equations describing propagation of a shock wave initiated, for example, by the motion of a piston against an inhomogeneous static background is considered. The solution is constructed in the form of Taylor series in a special time variable which is equal to zero on the shock wave. In the case of weak shock waves divergence of the series serves as the constraint for such an approach. Then the solution is constructed by linearizing the equations about the solution with a weak discontinuity. In the case of a given background the last solution can be always found exactly by solving successively a set of transport equations, all these equations are reduced to linear ordinary differential equations. The presentation begins from the one-dimensional solutions with plane waves and ends by discussion of spatial problems.  相似文献   

5.
We study the stability of wave flow of a viscous incompressible fluid layer subjected to tangential stress and an inclined gravity force with respect to long-wave disturbances.An asymptotic solution is constructed for the equations of the disturbed motion and the problem is reduced to the study of a second-order ordinary differential equation. It is shown that after loss of stability by a Poiseuille flow the laminar nature of the flow is not destroyed, but the form of the free surface acquires a wave-like profile. The Poiseuille regime is stable for low Reynolds numbers. The critical Reynolds number for wave flow is found, and the stability and instability regions are determined.  相似文献   

6.
The article discusses the development of one-dimensional flows in a viscous heat-conducting gas using the example of two flows: 1) the flow arising with the decomposition of a discontinuity of the pressure in the quiescent gas (flow in a shock tube); 2) the flow arising with the application of a constant heat flow at a gassolid interface. For such flows, there has been very little study of the initial stage of the process, right up to the time when nonheat-conducting zones are separated out, described by the Euler equations, as well as dissipation zones of the type of a shock wave or a boundary layer, which can be treated using asymptotic methods [1–3]. With the investigation of the initial stage, the complete solution of the system of Navier—Stokes equations is required. The present article discusses the initial stage of the flows on the basis of a numerical solution of problems 1 and 2. A study is made of the effect of the Prandtl number and of the viscosity coefficient on the behavior of the gas.  相似文献   

7.
空腔流动存在剪切层运动、涡脱落与破裂,以及激波与激波、激波与剪切层、激波与膨胀波和激波/涡/剪切层相互干扰等现象,流动非常复杂,特别是高马赫数(M>2)时,剪切层和激波更强,激波与激波干扰更严重,对数值格式的要求更高,既需要格式耗散小,对分离涡等有很高的模拟精度,又需要格式在激波附近具有较大的耗散,可以很好地捕捉激波,防止非物理解的出现。Roe和HLLC等近似Riemann解格式在高马赫数强激波处可能会出现红玉现象,而HLLE++格式大大改善了这种缺陷,在捕捉高超声速激波时避免了红玉现象的发生,同时还保持在光滑区域的低数值耗散特性。本文在结构网格下HLLE++格式的基础上,通过改进激波探测的求解,建立了基于非结构混合网格的HLLE++计算方法,通过无粘斜坡算例,验证了HLLE++格式模拟高马赫数流动的能力,并应用于高马赫数空腔流动的数值模拟,开展了网格和湍流模型影响研究,验证了方法模拟高马赫数空腔流动的可靠性和有效性。  相似文献   

8.
In the present article, we have studied the effects of inclined magnetic field on the peristaltic flow of Jeffrey fluid through the gap between two coaxial inclined tubes. The inner tube is rigid, whereas the outer tube has sinusoidal wave traveling down its wall. The governing equations are simplified using long wave length and low Reynolds number approximations. Exact and numerical solutions have been derived for velocity profile. The expressions for pressure rise and friction force are calculated using numerical integration. Graphical results and trapping phenomenon is presented at the end of the article to see the physical behavior of different parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
颗粒材料中致密波结构研究   总被引:1,自引:1,他引:0  
采用一维两相流模型与相应颗粒构形应力函数,研究了致密波的形成及其结构.用简化两相流模型系统地讨论致密波对有关因素的依赖关系.分析指出:小于基体材料音速的致密波仅能在非理想颗粒材料中存在,从波前到波后,所有状态物理量光滑过渡.大于基体材料音速的致密波,波头可能存在间断.应力函数与致密粘性确定后,致密波速度决定致密波结构、宽度、终态压实度.采用一维两相流模型模拟了活塞驱动颗粒床形成致密波这一动态过程.用线方法(MOL)对该方程组求数值解.计算表明,经过短暂的非稳态过程,颗粒床中形成一稳态致密波.分析了活塞速度与初始孔隙率对致密波结构的影响,并对简化两相流模型与两相流模型的计算结果进行了对比.  相似文献   

10.
Shock wave attenuation in polyurethane foams is investigated experimentally and numerically. This study is a part of research project regarding shock propagation in polyurethane foams with high-porosities = 0.951 ~ 0.977 and low densities of ρc = 27.6 ~55.8 kg/m3. Sixty Millimeter long cylindrical foams with various cell numbers and foam insertion condition were installed in a horizontal shock tube of 50 mm i.d. and 5.4 mm in length. Results of pressure measurements in air/foam combination are compared with CFD simulation solving the one-dimensional Euler equations. In the case of a foam B fixed on shock tube wall, pressures at the shock tube end wall increases relatively slowly comparing to non-fixed foam, free to move and a foam A fixed on shock tube wall. This implies that elastic inertia hardly contributes to pressure build up. Pressures behind a foam C fixed on shock tube wall decrease indicating that shock wave is degenerated into compression wave. Dimensionless impulse and attenuation factor decrease as the initial cell number increases. The momentum loss varies depending on cell structure and cell number.  相似文献   

11.
Hypersonic three-dimensional viscous rarefied gas flow past blunt bodies is investigated in the neighborhood of the stagnation point. The problem of applicability of the model of a thin viscous shock layer to the regime of transition from continuum to free-molecular flow is considered. In [1], it was shown that at low Reynolds numbers three hypersonic flow regimes can be distinguished and one of those regimes was investigated. In the present study an asymptotic solution of the thin viscous shock layer equations is obtained for another flow regime. With decrease in the Reynolds number the heat transfer coefficient determined by the solution obtained approaches its free-molecular value and the friction coefficient approaches its free-molecular limit, provided that the shock layer thickness is small. The analytical solution is compared with a numerical solution and the results of calculations based on direct Monte Carlo simulation.  相似文献   

12.
A Reynolds stress model for the numerical simulation of uniform 3D turbulent open‐channel flows is described. The finite volume method is used for the numerical solution of the flow equations and transport equations of the Reynolds stress components. The overall solution strategy is the SIMPLER algorithm, and the power‐law scheme is used to discretize the convection and diffusion terms in the governing equations. The developed model is applied to a flow at a Reynolds number of 77000 in a rectangular channel with a width to depth ratio of 2. The simulated mean flow and turbulence structures are compared with measured and computed data from the literature. The computed flow vectors in the plane normal to the streamwise direction show a small vortex, called inner secondary currents, located at the juncture of the sidewall and the free surface as well as the free surface and bottom vortices. This small vortex causes a significant increase in the wall shear stress in the vicinity of the free surface. A budget analysis of the streamwise vorticity is carried out. It is found that both production terms by anisotropy of Reynolds normal stress and by Reynolds shear stress contribute to the generation of secondary currents. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
G. J. Ball 《Shock Waves》1996,5(5):311-325
A Free-Lagrange numerical procedure for the simulation of two-dimensional inviscid compressible flow is described in detail. The unsteady Euler equations are solved on an unstructured Lagrangian grid based on a density-weighted Voronoi mesh. The flow solver is of the Godunov type, utilising either the HLLE (2 wave) approximate Riemann solver or the more recent HLLC (3 wave) variant, each adapted to the Lagrangian frame. Within each mesh cell, conserved properties are treated as piece-wise linear, and a slope limiter of the MUSCL type is used to give non-oscillatory behaviour with nominal second order accuracy in space. The solver is first order accurate in time. Modifications to the slope limiter to minimise grid and coordinate dependent effects are described. The performances of the HLLE and HLLC solvers are compared for two test problems; a one-dimensional shock tube and a two-dimensional blast wave confined within a rigid cylinder. The blast wave is initiated by impulsive heating of a gas column whose centreline is parallel to, and one half of the cylinder radius from, the axis of the cylinder. For the shock tube problem, both solvers predict shock and expansion waves in good agreement with theory. For the HLLE solver, contact resolution is poor, especially in the blast wave problem. The HLLC solver achieves near-exact contact capture in both problems. Received May 25, 1995 / Accepted September 11, 1995  相似文献   

14.
Nanoparticle transport and deposition in bends with circular cross-section are solved for different Reynolds numbers and Schmidt numbers. The perturbation method is used in solving the equations. The results show that the particle transport patterns are similar and independent of the particle size and other parameters when suspended nanoparticles flow in a straight tube. At the outside edge, particle deposition is the most intensive, while deposition at the inside edge is the weakest. In the upper and lower parts of the tube, depositions are approximately the same for different Schmidt numbers. Curvatures of tube, Reynolds number, and Schmidt number have second-order, forth-order, and first-order effects on the relative deposition efficiency, respectively.  相似文献   

15.
The problem of buoyancy driven turbulent flow in parallel-plate channels is investigated. The investigation is limited to vertical channels of uniform cross-section with different modes of heating. The details of the flow and thermal fields are obtained from the solution of the conservation equations of mass, momentum, and energy in addition to equations of the low Reynolds number turbulence model. The study covers Rayleigh number ranging from 105 to 107 and focuses on the effect of channel geometry on the characteristic of the flow and thermal fields as well as the local and average Nusselt number variation. A Nusselt number correlation has been developed in terms of a modified Rayleigh number and channel aspect ratio for the cases of symmetrically heated isothermal and isoflux conditions.  相似文献   

16.
Several theoretical and experimental studies of supersonic flow past a blunt body located in the wake behind another body have been made [1–7]. It has been shown that a reverse-circulation flow can occur in the shock layer at the front surface. The possibility of such a flow forming depends on the nonuniformity of the freestream flow and the Reynolds number. This paper presents new results of the theoretical study of the structure of the shock wave at the front surface of such a sphere, obtained on the basis of numerical solution of Navier-Stokes equations. It is shown that for a fixed nonuniformity of the freestream flow, an increase in the Reynolds number and cooling of the surface of the body lead to the formation of a secondary vortex in the region where the contour of the body intersects the axis of symmetry. A study is made of the variations of the drag and heat transfer parameters over the front surface of a cooled and thermally insulated sphere. The possibility of numerical simulation of the flow on the basis of the Euler equations is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 143–148, May–June, 1985.  相似文献   

17.
M. Sun  K. Takayama 《Shock Waves》1997,7(5):287-295
This paper deals with the formation of a secondary shock wave behind the shock wave diffracting at a two-dimensional convex corner for incident shock Mach numbers ranging from 1.03 to 1.74 in air. Experiments were carried out using a 60 mm 150 mm shock tube equipped with holographic interferometry. The threshold incident shock wave Mach number () at which a secondary shock wave appeared was found to be = 1.32 at an 81° corner and = 1.33 at a 120° corner. These secondary shock waves are formed due to the existence of a locally supersonic flow behind the diffracting shock wave. Behind the diffracting shock wave, the subsonic flow is accelerated and eventually becomes locally supersonic. A simple unsteady flow analysis revealed that for gases with specific heats ratio the threshold shock wave Mach number was = 1.346. When the value of is less than this, the vortex is formed at the corner without any discontinuous waves accompanying above the slip line. The viscosity was found to be less effective on the threshold of the secondary shock wave, although it attenuated the pressure jump at the secondary shock wave. This is well understood by the consideration of the effect of the wall friction in one-dimensional duct flows. In order to interpret the experimental results a numerical simulation using a shock adaptive unstructured grid Eulerian solver was also carried out. Received 1 May 1996 / Accepted 12 September 1996  相似文献   

18.
Unsteady drag on a sphere by shock wave loading   总被引:2,自引:0,他引:2  
The dynamic drag coefficient of a sphere by shock wave loading is investigated numerically and experimentally. The diameter of the sphere is varied from 8 m to 80 mm in numerical simulation. The axisymmetric Navier-Stokes equations are solved on a fine grid, and the grid convergence of the drag coefficient is achieved. The numerical result is validated by comparing the experimental data of a 80 mm sphere, measured by the accelerometer in a vertical shock tube. It is found that the sphere experiences in the early interaction one order higher drag than in the steady state. A transient negative drag, mainly resulting from the focusing of shock wave on the rear side of the sphere, is observed only for high Reynolds number flows, and the drag becomes positive because of increased skin friction for low Reynolds number flows.Received: 10 March 2004, Accepted: 24 May 2004, Published online: 20 August 2004[/PUBLISHED]M. Sun: Send offprints requests to  相似文献   

19.
Shock wave attenuation by grids and orifice plates   总被引:2,自引:0,他引:2  
The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.  相似文献   

20.
A chemical flood model for a three-component (petroleum, water, injected chemical) two-phase (aqueous, oleic) system is presented. It is ruled by a system of nonlinear partial differential equations: the continuity equation for the transport of each of its components and Darcy's equation for the two-phase flow. The transport mechanisms considered are ultralow interfacial tension, capillary pressure, dispersion, adsorption, and partition of the components between the fluid phases (including solubilization and swelling).The mathematical model is numerically solved in the one-dimensional case by finite differences using an explicit and direct iterative procedure for the discretization of the conservation equations. Numerical results are compared with Yortsos and Fokas' exact solution for the linear waterflood case including capillary pressure effects and with Larson's model for surfactant flooding. The effects of the above-mentioned transport mechanisms on concentration profiles and on oil recovery are also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号