首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Data are presented on the distribution of trace amounts of tantalum (V) between different mineral acid solutions and 0.1M solutions of N-oxides of 4-(5-nonyl)pyridine and trioctylamine. The optimal acidity is 0.01–0.5M, depending on the nature of the acid. Common anions have little effect on extraction. Possible mechanisms of extraction are suggested making use of slope analysis data. Separation factors for a number of metal ions with respect to tantalum are reported for the 0.1M 4-(5-nonyl)pyridine oxide—1M sulphuric acid extraction system. Separation from uranium(VI), thorium(IV) and a number of fission products is suggested. where a part of the work was done.  相似文献   

2.
The extraction of HNO3, thorium and uranium were studied in the presence of hydrofluoric acid. The extraction constants of both the acids are shown to be close to one another which results in their mutual displacement from the organic phase. Contrary to uranium, the extraction of thorium is much reduced as the concentration of hydrofluoric acid increases which may be explained by a stronger complexation of Th by fluoride ion in the aqueous phase.  相似文献   

3.
A method is described for the determination of uranium and thorium in manganese nodules. After dissolution of the sample in a mixture of perchloric and hydrofluoric acids, uranium is adsorbed on the strongly basic anion-exchange resin Dowex 1 (chloride form) from 6 M hydrochloric acid. The effluent is evaporated and the residue is taken up in 7 M nitric acid—0.25 M oxalic acid; thorium is then isolated quantitatively by anion-exchange on Dowex 1 (nitrate form). Thorium is eluted with 6 M hydrochloric acid and determined spectrophotometrically by the arsenazo III method. Uranium is eluted from the resin in the chloride form with 1 M hydrochloric acid and then separated from iron, molybdenum and other co-eluted elements on a column of Dowex 1 (chloride form); the medium consists of 50% (v/v) tetrahydrofuran, 40% (v/v) methyl glycol and 10% (vv) 6 M hydrochloric acid. After removal of iron and molybdenum by washing the resin with a mixture of the same composition and with pure aqueous 1 M hydrochloric acid, the adsorbed uranium is eluted with 1 M hydrochloric acid and determined by fluorimetry. The method was used successfully for the determination of ppm-quantities of uranium and thorium in 60 samples of manganese nodules from the Pacific Ocean.  相似文献   

4.
The distribution of tantalum(V) between 0.1M trioctylamine oxide dissolved in xylene and sulphuric acid solutions has been studied. On the basis of results on the distribution, it is concluded that at sulphuric acid concentration 0.5M, tantalum is probably extracted by a solvate mechanism as the complex Ta(OH) (SO4)2·3TOAO. It has also been shown that tantalum can be quantitatively separated from niobium, uranium, thorium and rare earth elements by extraction with N-oxide of trioctylamine from 0.5M sulphuric acid solution.  相似文献   

5.
A radiochemical procedure is presented for the sequential determination of uranium isotopes, thorium isotopes, and210Pb in coal and coal ash. This procedure consists of dry ashing the sample, a nitric—hydrofluoric acid dissolution, removal of iron with ether extractions, and separation of the elements of interest by anion exchange chromatography. Uranium and thorium isotopes are measured by alpha spectrometry, while210Pb is measured by beta counting its daugther activity,210Bi. For 10 g coal samples and 1 g ash samples, the chemical yields for the radioactivities measured were 70–80%, and the relative standard deviations for replicate analyses were generally less than 9%. The deviations of the means from the reference values were within the combined errors of each and were usually less than ±5%. Minimum detectable activities were about 0.02 pCi for uranium and thorium isotopes and 0.2 pCi for210Pb.  相似文献   

6.
In this study, the effects of various extraction parameters such as extractant types (Cyanex302, Cyanex272, TBP), acid type (nitric, sulfuric, hydrochloric) and their concentrations were studied on the thorium separation efficiency from uranium(VI), titanium(IV), lanthanum(III), iron(III) using Taguchi??s method. Results showed that, all these variables had significant effects on the selective thorium separation. The optimum separations of thorium from uranium, titanium and iron were achieved by Cyanex302. The aqueous solutions of 0.01 and 1 M nitric acid were found as the best aqueous conditions for separating of thorium from titanium (or iron) and uranium, respectively. The combination of 0.01 M nitric acid and Cyanex272 were found that to be the optimum conditions for the selective separation of thorium from lanthanum. The results also showed that TBP could selectively extract all studied elements into organic phase leaving thorium behind in the aqueous phase. Detailed experiments showed that 0.5 M HNO3 is the optimum acid concentration for separating of thorium from other elements with acidic extractants such as Cyanex272 and Cyanex302. The two-stage process containing TBP-Cyanex302 was proposed for separation thorium and uranium from Zarigan ore leachate.  相似文献   

7.
Korkisch J  Krivanec H 《Talanta》1976,23(4):295-300
A method is described for the determination of uranium and thorium in samples of natural waters. After acidification with citric acid the water sample is filtered and sodium citrate and ascorbic acid are added. The resulting solution of pH 3 is passed through a 4-g column of Dowex 1 x 8 (citrate form) on which both uranium and thorium are adsorbed as anionic citrate complexes. Thorium is eluted with 8M hydrochloric acid and separated from co-eluted substances by anion-exchange in 8M nitric acid medium on a separate 2-g column of the same resin in the nitrate form. After complete removal of iron by washing with a mixture consisting of IBMK, acetone and 1M hydrochloric acid (1:8:1 v v ) and treatment of the resin with 6M hydrochloric acid, the uranium is eluted from the 4-g column with 1M hydrochloric acid. In the eluate thorium is determined spectrophotometrically (arsenazo III method) while fluorimetry is employed for the assay of uranium. The procedure was used for the determination of uranium and thorium in numerous water samples collected in Austria, including samples of mineral-waters. The results indicate that a simple relationship exists between the uranium and thorium contents of waters which makes it possible to calculate the approximate thorium content of a sample on the basis of its uranium concentration and vice versa.  相似文献   

8.
Preconcentration of trace impurities form large-sized samples of uranium metal and thorium oxide using a small column of Chelex-100 followed by their determination using graphite furnace atomic absorption spectrometry (GFAAS) is reported. A 0.5–10-g amount of the sample (uranium metal or thorium oxide) was dissolved, complexed with ammonium carbonate and subjected to the ion-exchange procedure. The retained analytes were eluted with 2–4 M nitric acid and brought to a small volume for a final dilution to 10-25 ml for their determination using GFAAS. The validity of the separation procedure and recoveries at μg kg−1 levels was checked by standard addition; the recoveries were> 95%.  相似文献   

9.
Summary Solid-liquid extraction has been used to study the uptake of uranium(VI) and thorium(IV) from sulphuric acid using a TVEX-PHOR resin. The experimental results were found to fit the BET isotherm and show a higher affinity of the TVEX-PHOR resin towards the extraction of uranium than thorium under similar experimental conditions. The best separation of uranium from thorium is obtained from 3M sulphuric acid at V/m ratio of 20 ml/g. Elution of loaded uranium and thorium was carried out with 1M sodium carbonate and 0.075M sulphuric acid, respectively. After the elution of both elements, the regenerated resin could be reused with high efficiency.  相似文献   

10.
Ion exchange studies of uranium(VI), thorium(IV), plutonium(IV) and europium(III) ions on a macroreticular cation exchange resin, Amberlyst A-15, from solutions of 30% and 5% TBP—Shell Sol-T have been carried out. The metal ions were extracted into TBP Shell Sol-T phase from 8M NH4NO3 at different nitric acid concentrations. Ion exchange distribution ratios as a function of organic phase acidity of 30% and 5% TBP have been computed. Separation factors computed from the observed Kd values are plotted as a function of organic phase acidity.  相似文献   

11.
A solvent extraction process is proposed to recover uranium and thorium from the crystal waste solutions of zirconium oxychloride. The extraction of iron from hydrochloride medium with P350, the extraction of uranium from hydrochloride with N235, and the extraction of thorium from the mixture solutions of nitric acid and the hydrochloric acid with P350 was investigated. The optimum extraction conditions were evaluated with synthetic solutions by studying the parameters of extractant concentration and acidity. The optimum separation conditions for Fe (III) are recognized as 30% P350 and 4.5 to 6.0 M HCl. The optimum extraction conditions for U (VI) are recognized as 25% N235 and 4.5 to 6.0 M HCl. And the optimum extraction conditions for Th (VI) are recognized as 30% P350 and 2.5 to 3.5 M HNO3 in the mixture solutions. The recovery of uranium and thorium from the crystal waste solutions of zirconium oxychloride was investigated also. The results indicate that the recoveries of uranium and thorium are 92 and 86%, respectively.  相似文献   

12.
Flotation of thorium, plutonium (IV), uranium(VI) and gadolinium from aqueous nitric acid solutions (HNO3 concentration from 0.01 to 5.0M) was investigated using lauryl phosphoric acid (LPA) as a SAS-collector. It is established that the extent of removal of the metal ions increases with the amount of LPA introduced, regardless of the solution acidity. At a fixed mole LPA to metal ratio the extent of uranium(VI) and gadolinium removal is reduced with increasing acidity, while in case of plutonium(IV) and thorium this parameter remains constant. It is shown that in principle 100% extraction of plutonium(IV) and thorium by flotation is possible regardless of the acidity of aqueous solutions. Ca(NO3)2 added to the system in the amount of 0.5M does not significantly affect the flotation extraction of thorium.  相似文献   

13.
Ichinose N 《Talanta》1971,18(1):21-26
The work deals with the extraction of thorium or uranium from hydrochloric, perchloric, sulphuric or nitric acid solutions of various concentrations, or from mixed acid solutions, by means of isobutyl methyl ketone. When the extraction is made from 5-8M hydrochloric acid that is 10M in lithium chloride or from 7-8M hydrochloric acid that is 1M in magnesium chloride, uranium is extracted quantitatively (>99%), whereas thorium is hardly extracted at all.  相似文献   

14.
The extraction behavior of uranium, thorium and nitric acid has been investigated for the TEHDGA/isodecyl alcohol/n-dodecane solvent system. Conditional acid uptake constant (K H) of TEHDGA/n-dodecane and the ratio of TEHDGA to nitric acid were obtained as 1.72 and 1:0.96, respectively. The extracted species of uranium and thorium in the organic phase were found to be UO2(NO3)2·2TEHDGA and Th(NO3)4·2TEHDGA. A workable separation factor (D Th/D U) of the order of 300 was observed between thorium and uranium in the nitric acid range of 0.5M to 1.5M. Similar separation factor was also achieved at higher acidity when thorium was present in large concentration compared to uranium. These results indicate that TEHDGA solvent system could be a potential candidate for separation of thorium from uranium.  相似文献   

15.
Karve MA  Khopkar SM 《Talanta》1993,40(6):913-917
A novel method is proposed for the solvent extraction of niobium(V). A 0.1M solution of Aliquat 336S in xylene quantitatively extracts microgram quantities of niobium(V) from 0.01M ascorbic acid at pH 3.5-6.5. Niobium from the organic phase is stripped with 0.5M nitric acid and determined spectrophotometrically in the aqueous phase as its complex with TAR. The method permits separation of niobium not only from tantalum(V) but also from vanadium(IV), titanium(IV), zirconium(IV), thorium(IV), chromium(III), molybdenum(VI), uranium(VI), iron(III), etc. Niobium from stainless steel was determined with a precision of 0.42%.  相似文献   

16.
The effect of complexants—acetic, aminoacetic, tartaric, malonic, and oxalic acids; EDTA; and Na2CO3—on the adsorption and subsequent determination of thorium(IV), lanthanum(III), uranium(VI), and zirconium(IV) with Arsenazo M in the solid phase of polyacrylonitrile fiber filled with an ANKB-50 anion exchanger was studied. Complexing agents were introduced into the solution at the step of metal ion adsorption. It was shown that zirconium and uranium interacted with the iminodiacetate groups of the adsorbent in the course of adsorption; the adsorption of elements from 10?3 to 10?2 M complexant solutions (except for tartaric and oxalic acids and EDTA) under the optimum conditions was enhanced as compared to their adsorption from pure solutions; complexation with Arsenazo M in the solid phase proceeded at a higher acidity than in the solution. When the elements were present simultaneously, their total concentration and individual thorium could be determined from malonic acid solutions with Arsenazo M by varying the concentration of acid and the adsorption pH.  相似文献   

17.
A new method for the determination of traces of niobium in tantalum metal has been developed. The niobium is separated from tantalum by solvent extraction with hexone from hydrofluoric acid-hydrochloric acid solution, and from molybdenum and tungsten by solvent extraction with oxine-chloroform solution from ammoniacal citrate solution. The niobium is then determined by the spectrophotometric thiocyanate method.  相似文献   

18.
The separation of uranium and thorium from matrices containing various metal ions, was studied. The mobile phase contains isopropyldithiophosphoric acid (i-PrDTP), as a complexing agent, in order to differentiate the studied species by modifying their retention. The paper reports the successful separation and the quantitative determination of uranium and thorium in the presence of Ni2+, Co2+ and Ag+ in the concentration range 2.5–2.5 μg/μl for uranium and 2.5–30 μg/μl for thorium.  相似文献   

19.
The limit of detection (LOD) improvement in TLC determination of uranium and thorium in presence of other metal ions is presented in this paper. The mobile phase system contains iso-propyldithiophosphotic acid (i-PrDTP), as a complexing agent, in order to differentiate the studied species by modifying their retention. The paper reports the successful separation and the quantitative determination of uranium and thorium in the presence of other metal ions in the concentration range 2.5–30 μg/μl.  相似文献   

20.
Extractive recovery with n-octanol of tantalum(V) and niobium(V) from hydrofluoric acid solutions containing large amounts of titanium (up to 2-3 M) was studied. The conditions were found for separation of tantalum(V) and niobium(V) from titanium(IV), allowing recovery of 95.7 and 84.1% of tantalum and niobium fluoride complexes, respectively, in one extraction cycle, with 2.6% recovery of titanium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号