首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The title compound is insoluble in aprotic solvents and decomposes in protic ones. Its crystal structure consists of discrete molecules with non-crystallographic C30-symmetry and a transannular dative B? N bond (1.620(3) (Å). The molecules pack tightly (density 1.804 g cm?2) interacting via O…C contacts between carbonyl groups (2.92–3.05 Å)). The atoms show small vibrational motion which may be interpreted in terms of a rigid body model. Distances and angles obtained at 293 and 110 were corrected for effects of rigid body motion and do not show significant differences.  相似文献   

2.
The structure of two trinuclear iron acetates [Fe3O(CH3COO)6(H2O)3]Cl· 6H2O (I) and [Fe3O(CH3COO)6(H2O)3][FeCl4] · 2CH3COOH (II) was determined by X-ray diffraction analysis. Crystals I and II are ionic and belong to the orthorhombic system with parameters a = 13.704(3), b = 23.332(5), c = 9.167(2) Å, R = 0.0355, space goup P21212 for I and a = 10.145(4), b = 15.323(6), c = 22.999(8) Å, R = 0.0752, space group Pbc21 for II. The complex cation [Fe3O(CH3COO)6(H2O)3]+ has a μ3-O-bridged structure typical for trinuclear iron (III) compounds. As shown by Mössbauer spectroscopy, the iron(III) ions are in the high-spin state. In trinuclear cations, antiferromagnetic exchange interaction takes place between the Fe(III) ions with the exchange parameter J = -26.69 cm?1 for II (Heisenberg-Dirac-Van Vleck model for D3h, symmetry).  相似文献   

3.
Anhydrous Rare-Earth Acetates, M(CH3COO)3 (M = Sm? Lu, Y) with Chain Structures. Crystal Structures of Lu(CH3COO)3 and Ho(CH3COO)3 Single crystals of the anhydrous rare-earth acetates containing lutetium (type 1) and holmium (type 2) were obtained by crystallisation at 120°C from diluted acetic acid solutions of their oxides and cesium acetate. The crystal structures [Lu(CH3COO)3: orthorhombic, a = 825.85(8), b = 1 398.1(2), c = 823.9(1) pm, Vm = 143.24(3) cm3/mol, space group Ccm21 (No. 36), Z = 4, R = 0.035, Rw = 0.030; Ho(CH3COO)3: monoclinic, a = 1 109.1(3), b = 2 916.3(10), c = 786.8(2) pm, β = 131.90(1)°, Vm = 142.58(8) cm3/mol, space group C2/c (No. 15), Z = 8, R = 0.039, Rw = 0.039, Rw = 0.026] were determined from four-circle diffractometer data sets. The structures consist of one-dimensional infinite chains built up by bridging acetate ions. Ho3+ is coordinated by 8 oxygen atoms, whereas Lu3+ has only 7 nearest oxygen neighbours. The chains are stacked parallel to the [001] direction. Isotypic compounds with Tm? Lu (type 1) and Sm? Er, Y (type 2) were prepared as powders and characterized by X-ray powder patterns. Thermoanalytical investigations (DTA, Guinier-Simon technique) of all compounds have shown that there is a first-order phase transition at 180°C (type 2) and in the range of 230–255°C (type 1). The high-temperature phase crystallizes with the known Sc(CH3COO)3 structure (type 0) where the rare earth cations are surrounded by 6 oxygen atoms. In the case of the type 1 compounds the phase transition is reversible.  相似文献   

4.
Synthesis and Crystal Structure of Praseodymium Propionate Trihydrate, Pr(CH3CH2COO)3(H2O)3 Single crystals of Pr(CH3CH2COO)3(H2O)3 were obtained by dissolving freshly prepared praseodymium hydroxide in diluted propionic acid. The crystal structure (monoclinic, P21/c, Z = 4, a = 1034.2(2) pm, b = 1521.2(3) pm, c = 2086.3(7) pm, β = 102.87(2)°, R1 = 0.0864, wR2 = 0.1196) consists of one-dimensional infinite chains parallel [010]. Pr1 and Pr2 are coordinated by four tridentate-bridging propionate groups. Additionally, Pr1 is coordinated by three “coordination water” molecules, Pr2 by two bidentate propionate groups. There are, in addition, three “crystal water” molecules so that praseodymium propionate trihydrate should be formulated as [(H2O)3Pr1(CH3CH2COO)4Pr2(CH3CH2COO)2] (H2O)3.  相似文献   

5.
All-Union Scientific-Research Institute for Chemical Reagents and Ultrapure Chemical Substances. Translated from Zhurnal Strukturnoi Khimii, Vol. 29, No. 1, pp. 104–108, January–February, 1988.  相似文献   

6.
Thermal decomposition of iron(II) acetate, Fe(CH3COO)2, and iron(III) acetate hydroxide, FeOH(CH3COO)2, has been studied using57Fe Mössbauer spectroscopy and X-ray diffraction. Samples were thermally treated in air atmosphere between 150°C and 1000°C. The formation of maghemite '-Fe2O3, and hematite, -Fe2O3, is discussed. Hematite appears as the final decomposition product.  相似文献   

7.
Densities of dilute aqueous solutions of isopropanol, 1,5-pentanediol, cyclohexanol, benzyl alcohol, diethyl ether, 1,2-dimethoxyethane, acetone, and 2,5-hexanedione were measured by means of a vibrating-tube flow densimeter at temperatures near T = (302, 373, 423, 473, and 521) K at a pressure of p = 28 MPa. At the lowest and highest temperatures, measurements were also made close to the saturation vapour pressure of water to investigate the effect of pressure on the volumes of solutes. Apparent molar volumes were calculated for each solute and extrapolated to give partial molar volumes at infinite dilution. The variation of the volume with temperature, pressure, and structure of solute is discussed qualitatively, and group contributions are determined at the temperatures of measurements and p = 28 MPa. Several equations proposed in the literature for correlating the partial molar volumes at infinite dilution as a function of state parameters are tested. Parameters of one selected equation are tabulated allowing calculation of the partial molar volumes at infinite dilution at temperatures and pressures up to T = 573 K and p = 40 MPa. respectively.  相似文献   

8.
9.
Russian Chemical Bulletin - The photochemistry of aqueous solutions of the cis,trans-[PtIV(en)(I)2(CH3COO)2] complex (1) was studied by stationary photolysis, nanosecond laser flash photolysis and...  相似文献   

10.
The water-salt system of neodymium and samarium trichloroacetates, Nd(CCl3COO)3-Sm(CCl3COO)3-H2O, has been investigated by the isothermal solubility method at 298 K. The composition of the solid phases is found by the Schreinemakers residues method. The refractive indices, specific volumes, and viscosities of the liquid phases and the refractive indices of the solid residues have been determined. Continuous solid solutions are found to form in the system. Some thermodynamic characteristics have been calculated for the solid solutions.  相似文献   

11.
A study of the reaction initiated by the thermal decomposition of di-t-butyl peroxide (DTBP) in the presence of (CH3)2C?CH2 (B) at 391–444 K has yielded kinetic data on a number of reactions involving CH3 (M·), (CH3)2CCH2CH3 (MB·) and (CH3)2?CH2C(CH3)2CH2CH3 (MBB·) radicals. The cross-combination ratio for M· and MB· radicals, rate constants for the addition to B of M· and MB· radicals relative to those for their recombination reactions, and rate constants for the decomposition of DTBP, have been determined. The values are, respectively, where θ = RT ln 10 and the units are dm3/2 mol?1/2 s?1/2 for k2/k and k9/k, s?1 for k0, and kJ mol?1 for E. Various disproportionation-combination ratios involving M·, MB·, and MBB· radicals have been evaluated. The values obtained are: Δ1(M·, MB·) = 0.79 ± 0.35, Δ1(MB·, MB·) = 3.0 ± 1.0, Δ1(MBB·, MB·) = 0.7 ± 0.4, Δ1(M·, MBB·) = 4.1 ± 1.0, Δ1(MB·, MBB·) = 6.2 ± 1.4, and Δ1(MBB·, MBB·) = 3.9 ± 2.3, where Δ1 refers to H-abstraction from the CH3 group adjacent to the center of the second radical, yielding a 1-olefin. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
Wu Q  Lavigne JA  Tao Y  D'Iorio M  Wang S 《Inorganic chemistry》2000,39(23):5248-5254
A new 7-azaindole zinc(II) compound, Zn(7-azaindole)2(CH3COO)2 (1), a new ligand N-(2-pyridyl)-7-azaindole (NPA), and two NPA zinc(II) complexes, Zn(NPA)(CH3COO)2 (2) and Zn(NPA)((S)-(+)-CH3CH2CH(CH3)COO)2 (3), have been synthesized and structurally characterized. Compound 1 has a tetrahedral geometry, whereas compounds 2 and 3 have irregular six-coordinate geometry. The NPA ligand in compounds 2 and 3 functions as a bidentate chelate to the zinc center. Compound 1 has a blue luminescence in the solution and the solid state. Compounds 2 and 3 emit a blue color in the solid state. In solution, compounds 2 and 3 are fluxional, as established by 1H NMR experiments. Compound 1 is thermally stable, whereas compounds 2 and 3 undergo decomposition when heated in the solid state. A blue electroluminescent device using compound 1 as the emitting layer has been fabricated. Crystal data: NPA, monoclinic, P2(1)/c, a = 13.993(5) A, b = 8.456(3) A, c = 16.886(5) A, beta = 104.666(12) degrees, V = 1932.9(11) A3; 1, triclinic, P1, a = 9.5114(18) A, b = 10.460(7) A, c = 11.002(3) A, alpha = 117.18(3) degrees, beta = 103.287(18) degrees, gamma = 90.94(2) degrees, V = 938.3(7) A3; 2, monoclinic, C2/c, a = 13.234(6) A, b = 9.373(3) A, c = 13.956(7) A, beta = 113.24(3) degrees, V = 1590.7(12) A3; 3, monoclinic, P2(1), a = 11.047(7) A, b = 15.343(9) A, c = 13.785(8) A, beta = 100.123(9) degrees, V = 2300(2) A3.  相似文献   

13.
The unimolecular metastable decompositions of trimethylsilylacetic acid, (CH(3))(3)SiCH(2)COOH (1), and its methyl ester, (CH(3))(3)SiCH(2)COOCH(3) (2), were investigated by mass-analyzed ion kinetic energy (MIKE) spectrometry in conjunction with thermochemical data. The abundance of the molecular ions of both compounds, generated by electron ionization, is extremely low. However, the abundance of the ions generated by the loss of (.)CH(3) and observed at m/z 117 and 131 is moderate. These fragment ions further decompose to form the most abundant m/z 75 and 89 ions, respectively, by the loss of CH(2)CO through a (CH(3))(2)Si group migration. The loss of CH(2)CO is also observed to occur from 2(+.) and its fragment ion at m/z 115 generated by the loss of (.)OCH(3). The former reaction is proposed to occur via an ion-radical complex.  相似文献   

14.
《Mendeleev Communications》2022,32(2):212-214
The compound Na2Ti(CF3COO)6(CF3COOH)2 was synthesized as colorless crystals, extremely unstable in air, by the reaction of TiCl4 with trifluoroacetic acid and sodium trifluoroacetate. Crystallographic studies have shown that this sodium trifluoroacetatotitanate is the first example of a tetravalent titanium carboxylate [Ti(RCOO)6]2– containing titanium in an octahedral environment of oxygen atoms of carboxylate groups. Thermal decomposition of Na2Ti(CF3COO)6(CF3COOH)2 in an argon atmosphere results in the complex fluoride Na2TiF6.  相似文献   

15.
16.
The ternary water-salt system of lanthanum trichloroacetate and chloride was studied by the isothermal solubility method at 298 K. The compositions of the solid phases were determined by Schreinemakers’ method. The refractive indices, specific volumes, and viscosities of the liquid phase were found. The system was determined to be of the eutonic type.  相似文献   

17.
18.
Summary Betaine borate undergoes a phase transition of strongly second order at 142.5 K. Crystals below this temperature belong to the ferroelastic Aizu species mmmF2/m. The crystal structures of both phases have been determined. Paraelastic phase: Pmcn,a=7.769(1),b=9.873(2),c=11.974(2)Å,Z=4,T=293K,R=0.041 for 519 unique observed reflections. Ferroelastic phase: P21/c,a=7.615(5),b=9.872(3),c=11.947(5)Å, =92.98(8)°,Z=4,T=130K,R=0.083 for 507 unique observed reflections. In both structures the betaine molecules are connected to B(OH)3-groups via hydrogen bonds to form chains running parallel[001]. These chains are associated to each other by van der Waals forces.
  相似文献   

19.
Ternary Acetates of the Lanthanides with Cesium: Dimers in CsLu(CH3COO)4 and Trimers in Cs2[Lu3(CH3COO)10(OH)(H2O)]. Synthesis, Crystal Structures, Thermolysis Single crystals of CsLu(CH3COO)4 and Cs2[Lu3(CH3COO)10(OH)(H2O)] were obtained from an aqueous solution of lutetium and cesium acetate in a 1:1 molar ratio. The crystal structures (CsLu(CH3COO)4: monoclinic, P21/n (no. 14), Z = 8, a = 1 293.1(2), b = 1 323.8(2), c = 1 622.5(3) pm, β = 92.01(2)°, Vm = 208.97(6) cm3/mol, R = 0.056, Rw = 0.034; Cs2[Lu3(CH3COO)10(OH)(H2O)]: monoclinic, C2/c (no.15), Z = 4, a = 2 138.5(6), b = 1 378.0(3), C = 1 482.9(4) pm, β = 106.15(2)°, Vm = 632.0(3) cm3/mol, R = 0.049, Rw = 0.036) were determined from four-circle-diffractometer data. The structures consist of dimers and trimers, respectively, that are built by bridging acetate groups. These units are fragments of the infinite chains of the Ho(CH3COO)3 type of structure. The isotypic compounds CsM(CH3COO)4 with M=Eu? Lu were synthesized and characterized by the X-ray Guinier technique. The thermal decomposition of CsLu(CH3COO)4 was examined with thermoanalytical methods (TG/DSC with coupled gas analysis) and the Guinier-Simon technique: it decomposes at 260°C in an endothermic reaction to Lu2O3 and Cs2CO3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号