首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
截尾正态分布的最小后验风险Bayes推断   总被引:4,自引:0,他引:4  
设有两个总体G0、G1,分别服从参数为(μ0,σ)与(μ1,σ)的截尾正态分布.基于寿命数据X,考虑判别问题μ=μ0 vs.μ=μ1(μ1>μ0>0).本文依据最小后验风险准则,给出了上述问题的Bayes判决方法,为寿命判别制定了一个简便操作的规则.  相似文献   

2.
工序能力Bayes推断   总被引:1,自引:0,他引:1  
王正东 《应用数学》1995,8(2):151-157
本文从Bayes观点研究工序能力,对无信息先验和共轭先验,给出了Cp的后验分布、条件期望估计和最大后验估计、Bayes置信下限和判断工序是否有能力的临界值,适于对相似工序作统计推断。  相似文献   

3.
本文讨论在均值未知,方差已知的正态分布情况下通过在共轭先验以及Jeffreys先验二种先验下的Bayes估计问题,在平方损失函数下和线性损失函数下Bayes风险的比较.数据计算可以看出,在Jeffreys先验下的Bayes风险要比在共轭先验下的Bayes风险要大,但是当样本量增大时,两者的后验风险越来越靠近.  相似文献   

4.
软件可靠性模型的Bayes推断及Gibbs算法   总被引:4,自引:0,他引:4  
作为重要的软件可靠性模型,JM模型的研究具有重要意义.论文研究了JM模型Bayes估计及其Gibbs算法.在先验分布确定的情况下,给出了Bayes估计的Gibbs算法,并证明了其收敛性.最后通过模拟分析发现:在1≥100,k〉600时,所得到的参数Bayes估计与初始值几乎无关.从而说明Gibbs算法的可行性.  相似文献   

5.
将统计分析中的Bayes方法应用到参数识别问题中,提出了利用测量频率的Bayes估计识别动力学模型的方法,该方法是基于广义逆特征值问题的解。考虑到试验数据的随机性,测量频率用正态分布来描述。此外,将工程师关于测量频率的置信度进行量化,并且与识别过程相结合。数值算例证明了这一方法的有效性。  相似文献   

6.
如何分离出少量区别不同组织类型的特异性基因是DNA微阵列数据分析中的主要问题,特别是构建恰当的统计模型来刻画这些不同组织类型的DNA表达形式尤为重要.为此,基于基因DNA微阵列数据的特点,我们假定对数变换后的微阵列数据服从混合正态分布.我们采用分级Bayesian先验刻画不同基因的相关性,利用分级Bayesian方法构建模型,给出了刻画不同组织基因表达的差异的一个标准,用MCMC迭代计算该标准.模拟计算表明我们的模型具有较好的识别能力.  相似文献   

7.
心理状态数的Bayes估计   总被引:4,自引:0,他引:4  
设误差 X在心理状态数的作用下的分布为偏正态分布 ,即 X有密度f ( x;σ2 ,C) =C2πσe-x22σ2   x 02 - C2πσe-x22σ2   x >0其中 0 C 2为心理状态数 ,σ>0为未知参数 ,本文分别在 C服从 [C1,C2 ]上的均匀分布 ,Jeffreys无信息先验分布和共轭先验分布的假设下 ,得到了心理状态数 C的 Bayes估计。  相似文献   

8.
本文考虑如下一类分布族:F(t)=[g(t)]θ,-∞A0(1)其中g(t)是关于t单调递增的可微函数,且g(A)=0,g(B)=1.在共轭先验分布下研究了未知参数η=1θ的损失函数和风险函数的B ayes估计及其保守性质,并给出相应的B ayes估计的合理性.  相似文献   

9.
限制参数空间上的Fiducial推断   总被引:5,自引:0,他引:5  
给出了在限制参数空间上,利用Fiducial方法求参数的区间估计的一般方法,并且讨论了一些常见的典型问题,结果表明所得的区间估计是合理的.另外,本文还证明了在限制参数空间上,刻度族和位置族中参数的条件Fiducial分布与无信息先验的Bayes 后验分布一致,推广了Lindely的结论.  相似文献   

10.
本文研究了各总体服从多元正态分布 ,其未知参数的先验分布均为扩散先验分布时 ,如何利用待判样品的预报密度函数、构造后验概率比并据此对样品进行分类与判别 ;此方法并不需要假设各总体分布的协方差相同 ,而且在预试样本容量较小时仍然可行。  相似文献   

11.
考虑具有奇异矩阵椭球等高分布误差的多元线性回归模型的贝叶斯统计推断,在非信息先验下得到了系数矩阵关于Hausdorff测度的后验边缘分布和未来观察值的预测分布,并得到了一类特殊奇异矩阵椭球等高分布下误差协方差矩阵的后验边缘分布.对于具有奇异矩阵正态分布误差的多元线性回归模型,在广义正态-逆Wishart共轭先验下得到了类似的后验边缘分布和预测分布结果.在上述两种先验分布下,回归系数矩阵的后验边缘分布和预测分布是双奇异矩阵t分布,这种分布具有关于Hausdorff测度的精确密度.结果表明,在非信息先验下,回归系数矩阵的后验边缘分布和未来观察值的预测分布在奇异矩阵椭球等高分布类中具有稳健性.  相似文献   

12.
多重线性回归模型的贝叶斯预报分析   总被引:1,自引:0,他引:1  
多重线性回归模型的贝叶斯预报分析是贝叶斯线性模型理论的重要组成部分。通过模型系统的统计结构,证明了矩阵正态-Wishart分布为模型参数的共轭先验分布;利用贝叶斯定理,根据模型的样本似然函数和参数的先验分布推导了参数的后验分布;然后,从数学上严格推断了模型的预报分布密度函数,证明了模型预报分布为矩阵t分布。研究结果表明:由于参数先验分布的作用,样本的预报分布与其原统计分布有着本质性的差异,前服从矩阵正态分布,而后为矩阵t分布。  相似文献   

13.
基于扩展的随机生产前沿模型,研究了区域生产效率的差异和其影响因素的作用效果,应用贝叶斯统计方法对中国各省份2010-2017的年度数据(不包含港澳台地区,下同)进行了实证研究.研究发现:生产效率总体呈逐渐下降的趋势,地区间生产效率有一定的差异,高等教育规模对生产效率具有显著的直接影响.人力资本能有效促进东部和中部地区的经济增长,西部地区主要依靠资本促进经济增长.环境污染对中部地区的经济增长具有一定的负向作用.  相似文献   

14.
Researchers have long struggled to identify causal effects in nonexperimental settings. Many recently proposed strategies assume ignorability of the treatment assignment mechanism and require fitting two models—one for the assignment mechanism and one for the response surface. This article proposes a strategy that instead focuses on very flexibly modeling just the response surface using a Bayesian nonparametric modeling procedure, Bayesian Additive Regression Trees (BART). BART has several advantages: it is far simpler to use than many recent competitors, requires less guesswork in model fitting, handles a large number of predictors, yields coherent uncertainty intervals, and fluidly handles continuous treatment variables and missing data for the outcome variable. BART also naturally identifies heterogeneous treatment effects. BART produces more accurate estimates of average treatment effects compared to propensity score matching, propensity-weighted estimators, and regression adjustment in the nonlinear simulation situations examined. Further, it is highly competitive in linear settings with the “correct” model, linear regression. Supplemental materials including code and data to replicate simulations and examples from the article as well as methods for population inference are available online.  相似文献   

15.
We introduce new classes of stationary spatial processes with asymmetric, sub-Gaussian marginal distributions using the idea of expectiles. We derive theoretical properties of the proposed processes. Moreover, we use the proposed spatial processes to formulate a spatial regression model for point-referenced data where the spatially correlated errors have skewed marginal distribution. We introduce a Bayesian computational procedure for model fitting and inference for this class of spatial regression models. We compare the performance of the proposed method with the traditional Gaussian process-based spatial regression through simulation studies and by applying it to a dataset on air pollution in California.  相似文献   

16.
在经济领域中,时间序列具有序列相关和长记忆等特征,用考虑了时间序列短记忆性和长记忆的ARFIMA来模型分析研究经济时间序列有利于提高拟合及预测的精度。近几十年来对ARFIMA模型参数估计和分数差分算子阶数d的研究越来越多,该模型的应用也越来越广泛。基于贝叶斯方法在参数估计中的优越性,本文结合众多应用此方法的文献所得到的后验分布特点,提出了合理的先验分布,考虑到计算难度,采用MCMC方法对模型的参数进行估计,最后应用我国过去几十年的GDP数据进行实证分析,得到了ARFIMA模型参数的后验分布图、均值、方差及95%的置信区间。  相似文献   

17.
根据贝叶斯原理,本文分别讨论了在误差项σ2已知与未知两种情况下,给出了共积向量的残差的后验分布,依据残差uIt是否是单位根过程I(1)来判断向量Yt是否存在共积,如果残差是I(1)的,则拒绝Yt是共积,否则接受Yt是共积的。  相似文献   

18.
When the data has heavy tail feature or contains outliers, conventional variable selection methods based on penalized least squares or likelihood functions perform poorly. Based on Bayesian inference method, we study the Bayesian variable selection problem for median linear models. The Bayesian estimation method is proposed by using Bayesian model selection theory and Bayesian estimation method through selecting the Spike and Slab prior for regression coefficients, and the effective posterior Gibbs sampling procedure is also given. Extensive numerical simulations and Boston house price data analysis are used to illustrate the effectiveness of the proposed method.  相似文献   

19.
??When the data has heavy tail feature or contains outliers, conventional variable selection methods based on penalized least squares or likelihood functions perform poorly. Based on Bayesian inference method, we study the Bayesian variable selection problem for median linear models. The Bayesian estimation method is proposed by using Bayesian model selection theory and Bayesian estimation method through selecting the Spike and Slab prior for regression coefficients, and the effective posterior Gibbs sampling procedure is also given. Extensive numerical simulations and Boston house price data analysis are used to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号