首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Propagating in the nonferromagnetic electron gas on the cylindrical nanotube's surface spin waves in longitudinal magnetic field are considered. The spectrum of electrons in the Hartree-Fock approximation was applied. The dynamic spin susceptibility of a degenerate electron gas was derived using the random phase approximation. The spectra of intra-subband and inter-subband magnons were calculated in quasiclassical and quantum limits. The quantity of spin waves spectrum branches depends on the amount of filled subbands. In case the filled subband numbers are large, the wave's frequencies undergo oscillations of de Haas-van Alphen and Aharonov-Bohm types with the electron density and the magnetic induction changes.  相似文献   

2.
通过采用转移矩阵方法求解自旋电子隧穿过程,理论研究了半导体超晶格系统中电子自旋输运的磁电调控行为.结果表明:仅对超晶格系统施以磁调制,隧穿系数将出现自旋分裂,随磁场增强,电导自旋极化率变大且展宽于费米能区;若选取不变磁场情况,同时施以间隔周期电场调制,超晶格的电子极化率将有更为显著地提高.进一步发现,随电场强度的改变,电子自旋输运行为显然存在两个明显不同区域,下自旋电子将在不同调制区域表现为不同的变化趋势.然而,若对周期磁超晶格施加间隔两周期的电调制,自旋电导输运的临界行为消失,电导极化率在高能区的共振峰 关键词: 半导体超晶格 自旋输运 磁电调控  相似文献   

3.
A dynamic systemS P described by the Pauli equation for nonrelativistic electron is investigated merely as a distributed dynamic system. No quantum principles are used. This system is shown to be a statistical ensemble of nonrelativistic stochastic pointlike particles. The electron spin is shown to have a classical analog which is a collective (statistical) property of the ensemble (not a property of a single electron). The magnetic moment of the electron is a quantum property which has no classical analog. The magnetic moment is parallel to the spin only in the stationary state. In the arbitrary state the magnetic moment is not connected with the spin direction.  相似文献   

4.
A SPLEEM (spin polarized low energy electron microscope) has been designed with a numerical simulation of electrostatic and magnetic field distributions and electron ray trajectories. Highly (more than 90%) spin polarized electron source has been used. A Wien type spin manipulator and a magnetic lens type spin rotator are used to align spin direction. A magnetic field free objective lens is designed to observe magnetic domain structure of magnetic materials. High or low magnification mode can be selected by using a combined electrostatic and magnetic objective lens for a high spatial resolution and a wide imaging area observation. An electrostatic mirror aberration corrector is installed after the image forming objective lens. A double deflection 45° beam separator is used to bend the direction of electrons from the source to the objective lens and from the objective lens to the mirror aberration corrector.  相似文献   

5.
We have studied the effect of electron spin on the kinetic Alfvén waves in the presence of uniform static magnetic field in an electron–ion plasma. We deduce that the usual kinetic Alfvén waves are modified via spin quantum effects of electrons. The dimensionless parameters that determine the relative importance of the electron spin become prominent at higher densities. It is found that the kinetic Alfvén wave frequency decreases due to the electron spin contribution in the kinetic limit while in the inertial limit they are almost unaffected in a hot magnetized plasma.  相似文献   

6.
Abstract

The development of solid-state physics and, in particular, the investigation of magnetoordered crystals require the use of experimental methods that will yield information about the spatial distribution of electron and spin densities and about different branches of the energy spectrum in crystals. These data together with data on crystal symmetry provide important information that can be used to develop theories of the magnetoordered state. Nuclear magnetic resonance NMR) is one of the most fruitful methods for studying spatial distributions of local magnetic fields and spin density, electron-nuclear interactions, and the temperature dependence of magnetic moments. The nuclei are excellent natural probes that allow direct measurement of the properties of electron and spin systems of crystals. Of course, such measurements can only be made on nuclei that have magnetic moments.  相似文献   

7.
通过分析不同温度下HgMnTe磁性二维电子气Shubnikov-de Hass(SdH)振荡的拍频现象,研究了量子阱中电子自旋 轨道相互作用和spd交换相互作用.结果表明:(1)在零磁场下,电子的自旋 轨道相互作用导致电子发生零场自旋分裂;(2)在弱磁场下,电子的自旋-轨道相互作用占主导地位,并受Landau分裂和Zeeman分裂的影响,电子的自旋分裂随磁场增加而减小;(3)在高磁场下,电子的spd交换相互作用达到饱和,电子的自旋分裂主要表现为Zeeman分裂.实验证明了当电子的Zeeman分裂能量与零场 关键词: 磁性二维电子气 Zeeman分裂 Rashba自旋分裂  相似文献   

8.
The processes of electron spin dynamics in a hybrid nonresonance structure, which includes a layer of a diluted magnetic II–Mn–VI semiconductor and an asymmetric quantum well (QW) of a nonmagnetic III–V semiconductor, are experimentally studied. The nonresonance of the structure is determined by the fact that the level of the ground state of the magnetic layer falls into the range of the excited states of the nonmagnetic QW. The electron polarization in the ground thermalized state of QW is found not to depend on the magnetic part of the structure. However, the magnetic part affects the electron polarization in the excited state via spin injection from the magnetic semiconductor and the mixing of the electronic states of the magnetic and nonmagnetic subsystems of the structure. The possibility of controlling the polarization of an electron spin by carrier excitation toward the region of mixed states along with the absence of depolarizing influence of the magnetic semiconductor on carriers in the thermalized state of QW can be applied to design new spintronic devices along with those that use spin injection, optical orientation, and depolarization.  相似文献   

9.
研究了电子的自旋相关的隧穿和极化。在外加磁场的作用下,自旋向上的电子与自旋向下的电子具有不同的隧穿系数。当电子的自旋方向与磁场方向相反时,其隧穿概率受到磁场的抑制而变小;反之,当两平行时,电子的了隧穿系数增大。这种差异可以用本中定义的自旋极化率来表示。本对不同磁场下的自旋极化率进行了计算,结果也表明当电子的动能较小,这种自旋极化的效应越显。  相似文献   

10.
A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and magnetic fields. It is found that magnetic impurity increases the degree of spin polarization irrespective of temperature, while the electron–phonon interaction decreases the degree of spin polarization. Results are found to be in better agreement with experiments.  相似文献   

11.
Hall effects of electrons can be produced by an external magnetic field, spin–orbit coupling or a topologically non-trivial spin texture. The topological Hall effect (THE) – caused by the latter – is commonly observed in magnetic skyrmion crystals. Here, we show analogies of the THE to the conventional Hall effect (HE), the anomalous Hall effect (AHE), and the spin Hall effect (SHE). In the limit of strong coupling between conduction electron spins and the local magnetic texture the THE can be described by means of a fictitious, “emergent” magnetic field. In this sense the THE can be mapped onto the HE caused by an external magnetic field. Due to complete alignment of electron spin and magnetic texture, the transverse charge conductivity is linked to a transverse spin conductivity. They are disconnected for weak coupling of electron spin and magnetic texture; the THE is then related to the AHE. The topological equivalent to the SHE can be found in antiferromagnetic skyrmion crystals. We substantiate our claims by calculations of the edge states for a finite sample. These states reveal in which situation the topological analogue to a quantized HE, quantized AHE, and quantized SHE can be found.  相似文献   

12.
The thermal conductivities and spin polarization induced by the temperature gradient are investigated in a Rashba spin–orbit-coupled two-dimensional electron gas. In this spin–orbit-coupled system in the presence of nonmagnetic or magnetic electron–impurity scattering, the Wiedemann–Franz law still holds. However, the spin polarization induced by the temperature gradient strongly depends on the property of impurities. The components of spin accumulation both perpendicular and parallel to the direction of the temperature gradient, and the thermally induced charge Hall conductivity may be nonzero for magnetic disorders.  相似文献   

13.
Using the trion as an optical probe, we uncover novel electron spin dynamics in CdSe/ZnSe Stranski-Krastanov quantum dots. The longitudinal spin lifetime obeys an inverse power law associated with recharging processes in the dot ensemble. No hint at spin-orbit mediated spin relaxation is found. At very weak magnetic fields (< 50 mT), electron spin dynamics related to the hyperfine interaction with the lattice nuclei is uncovered. A strong Knight field gives rise to nuclear ordering and formation of dynamical polarization on a 100-micros time scale under continuous electron spin pumping. The associated spin transients are temperature robust and can be observed up to 100 K.  相似文献   

14.
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.  相似文献   

15.
A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shielded by a box and a cylinder made of nickel--iron--molybdenum soft magnetic alloy without Helmholtz coil arrangement. And a uniformly distributed residual magnetic field of less than 5×10-7,T is obtained near the collision area. The spin polarized electron beam is transmitted and focused onto collision point from photocathode by a set of electron optics with more than 25% transmission 95cm distance through an 1mm diameter aperture. Construction and operation of the apparatus, such as vacuum and magnetic shielding system, photocathode, laser optics, electron optics and polarimeter are discussed. The polarization of the spin polarized electron beam is determined to be 30.8\pm3.5% measured with a He optical polarimeter.  相似文献   

16.
基于压电陶瓷精密微位移系统的扫描探测技术是目前精密测量仪器进行微纳区域/结构性能测试的核心系统,但压电陶瓷材料存在迟滞、非线性问题,限制了对微位移分辨能力的提升.本文以金刚石氮空位色心为敏感单元,利用电子自旋效应对磁场强度的高分辨敏感机理,结合永磁体周围不同位置对应的磁场强度变化关系,提出了一种基于金刚石氮空位色心电子自旋敏感机理的微位移检测方法.通过建立电子自旋效应与微位移的关联模型,搭建了相应的微位移测量系统.经实验验证,该系统对微位移测试的灵敏度为16.67 V/mm,检测分辨率达到60 nm,实现了对微位移的高分辨率测量.并通过理论分析,该系统的微位移测量分辨率可进一步提升至亚纳米级水平,为新型微位移测量技术提供了发展方向和研究思路.  相似文献   

17.
Using the time-dependent Schrödinger equation, we present the analytical result of the expectation value of spin injected into a two-dimensional electron gas with respect to an arbitrarily spin-polarized electron state and monitor the spin time-evolution. We demonstrate that the expectation value of spin operator Sx is the time-independent, and only the expectation values in the Sy-Sz plane are time-dependent. A detailed study of spin precession in the spin-valve and spin-transistor geometry is presented, in which the initial spin-polarized electron state point perpendicular and parallel to the current direction, respectively. We put forward the possible reason that the resistance change is independent of gate voltage in the spin-valve geometry. Furthermore, it has been shown that the effective magnetic field generated by the spin-orbit interaction is not same with the truly magnetic field. The main effect of the truly magnetic field is to align the spin along the field direction, but the effective magnetic field generated by the spin-orbit interaction does not.  相似文献   

18.
The generation of electron spin coherence has been studied in n-modulation-doped (In,Ga)As/GaAs self-assembled quantum dots (QDs) which contain on average a single electron per dot. The doping has been confirmed by pump–probe Faraday rotation experiments in a magnetic field parallel to the heterostructure growth direction. For studying spin coherence, the magnetic field was rotated by 90° to the Voigt geometry, and the precession of the electron spin about the field was monitored. The coherence is generated by resonant excitation of the QDs with circularly polarized laser pulses, creating a coherent superposition of an electron, and a trion state. The efficiency of the generation can be controlled by the pulse intensity, being most efficient for (2n+1)π pulses.  相似文献   

19.
Measurements of the spin polarization of field emitted electrons from various ferromagnetic (Gd, Ni, Fe) and nonferromagnetic metals (W) show a steady increase of the angle? s between momentum and electron spin with increasing external magnetic field (spin rotation). This effect is refered to the coupling between the magnetic moment of the electron and the strong electric field in the potential barrier at the emitter surface during the tunneling process. A formal application of the equation of spin motion derived by Bargmann, Michel and Telegdi for an electron moving in homogeneous electromagnetic fields delivers a quantitative agreement with the experimental results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号