首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fully automated system for the direct determination of methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) at the ng/L level is described. It is based on solid phase extraction preconcentration incorporated in a flow injection (FI) system, high performance liquid chromatography (HPLC) separation, reduction combined with thermolysis and determination by cold vapour atomic absorption spectrometry (CVAAS). For preconcentration a microcolumn of bonded silica with octadecyl functional groups (C18 reversed phase material) was used as a sorbent for the mercury complexes formed on-line with ammonium pyrrolidine dithiocarbamate. Retained mercury species are eluted with a methanol-acetonitrile-water mixture and subjected to separation on an octadecylsilane (ODS) column before determination by CVAAS. The sensitivity of organo-mercury determination could be improved by using NaBH4 as a reductant combined with a thermolysis step. In order to perform on-line measurements the preconcentration microcolumn was mounted in a pressure-tight casing. Limits of detection for MeHg, EtHg, PhHg and Hg(II) employing a sample volume of 58.5 mL were 9, 6, 10 and 5 ng/L, respectively. The relative standard deviation (RSD) calculated from 9 repeated measurements was found to be 3.6%, 5.5%, 10.4% and 7.6% for MeHg, EtHg, PhHg and Hg(II), respectively. Finally, the application of this method for speciation of mercury in fish and human urine is described. Received: 10 March 1997 / Revised: 29 January 1998 / Accepted: 5 February 1998  相似文献   

2.
A method has been developed for the determination of total and organic mercury in biological materials and sediments. A microwave assisted mineralization of the organic mercury, after its extraction from the matrix, is described. This procedure warrants complete transformation of Hg(II) and, consequently, the quantitative reduction to Hg(0). The conditions for mercury reduction were optimized by a central composite design. The preconcentration of the analyte has been achieved by amalgamation on a trap system, consisting in a pyrolytic graphite platform wound by a gold wire. Mercury was determined by cold vapour atomic absorption spectrometry. The method was validated by the analysis of two certified reference materials and applied to the determination of total and organic mercury species in mussel tissues and sediments. The method is simple and practical, and offers the advantage of not requiring special equipment to measure inorganic and organic mercury simultaneously.  相似文献   

3.
Di P  Davey DE 《Talanta》1994,41(4):565-571
A reverse-phase extraction column method has been employed as an on-line preconcentration technique for trace gold analysis by flame atomic absorption spectrometry. Di(methylheptyl)methyl phosphonate (DMHMP) loaded onto a macroporous resin was used as the immobilized phase. A thiourea-HCl solution was found successful in eluting the gold. The experimental parameters were optimized by Simplex Optimization, with 17 tests needed to obtain optimal conditions. Sensitivities of 5.2 mug/l. and 2.3 mug/l., with sample frequencies of 45/hr and 48/hr, were obtained by using single and dual-columns respectively. The recoveries for mixed composition samples were 93-110%.  相似文献   

4.
Recent progress in flow injection on-line separation and preconcentration techniques for electrothermal atomic absorption spectrometry (ETAAS) are reviewed, stressing the advancements made within the past 2 or 3 years. Important trends and potentials for future development are discussed, including the use of air-transport and air-segmentation in on-line separation systems, the use of knotted reactors as a sorption medium, and other designs for on-line coprecipitation and solvent extraction systems to improve the robustness and efficiency of on-line separation systems for ETAAS.  相似文献   

5.
An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg(+), according to the t-test for a 95% confidence level. It is amazing how this very simple method is able to provide very important information on mercury speciation.  相似文献   

6.
Several approaches to the determination of selenomethionine, selenocystine, selenite and selenate by high-performance liquid chromatography with online detection by atomic absorption spectrometry are described. The N?2,4-dinitrophenyl derivatives of selenomethionine, selenoethionine, selenocystine and phenylmercury(II) cystineselenoate were recovered from aqueous solution, separated on a Nucleosil 5-NO2 reversed-phase HPLC column with a methanolic mobile phase containing acetic acid and triethylamine, and detected with a quartz thermochemical hydride-generating interface–atomic absorption spectrometry (AA) system. The restriction of having to perform chromatography with an organic mobile phase (to support the combusion process) was overcome with a new interface design capable of operation with either organic or aqueous HPLC mobile phases. Using aqueous acetic acid (0.015% v/v) containing 0.1% (w/v) ammonium acetate delivered at 0.5cm3 min?1, selenate, selenite, selenomethionine, selenocystine and selenoethionine were separated virtually to baseline on a cyanopropyl-bonded phase HPLC column. Other selenium compounds which were investigated included methane seleninic and methane selenonic acids as well as the crude oxidation product mixtures resulting from the treatment of selenomethionine and selenocystine with hydrogen peroxide. A procedure for extracting selenate, selenite, selenomethionine, selenocystine and selenoethionine from spiked water or ground feed supplement into liquefied phenol resulted in acceptable recoveries for the latter four analytes but was unacceptably low for selenate.  相似文献   

7.
The flow-injecton preconcentration of lead with immobilised reagents under a variety of conditions is discussed. Timed sample loading and matrix removal without passing the matrix to the nebuliser were achieved simply with one valve. Reagent consumption and calibration time were reduced by the addition of further valves. A system design incorporating control of the timing of operations by a commercial autosample is described. The effects of pH and interferent ions were examined. Water samples were analysed against aqueous standards and as standard additions solutions. For an analysis time of about 3 min a preconcentration factor of about 40 was obtained for both peak height and area measurements. Detection limits of down to 1.4 ml?1 were obtained.  相似文献   

8.
Flow injection (FI) on-line separation and preconcentration systems for electrothermal atomic absorption spectrometry (ETAAS) are reviewed, highlighting the main developments in the field since 1990 and work achieved in the authors laboratory. These include developments in on-line preconcentration systems based on column techniques, solvent extraction, coprecipitation and hydride sequestration. Advantages, limitations and potentials of the FI-ETAAS combination are discussed.  相似文献   

9.
A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg–DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l 1 for Hg2+ and 2.0 ng l 1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l 1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.  相似文献   

10.
11.
Flow injection (FI) on-line separation and preconcentration systems for electrothermal atomic absorption spectrometry (ETAAS) are reviewed, highlighting the main developments in the field since 1990 and work achieved in the authors' laboratory. These include developments in on-line preconcentration systems based on column techniques, solvent extraction, coprecipitation and hydride sequestration. Advantages, limitations and potentials of the FI-ETAAS combination are discussed.  相似文献   

12.
Narcise CI  Coo LD  Del Mundo FR 《Talanta》2005,68(2):298-304
A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining μg/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III + V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10 ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III + V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3 μg/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8 μg/l for As(V) and As(III + V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10 ml samples were 3-23 for As(V) and 2-15 for As(III + V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5 μg/l. The LCR for a 5-ml sample was 0.3-10 μg/l for As(V) and 0.2-20 μg/l for As(III + V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.  相似文献   

13.
A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry.

The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g−1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1–3.0 mg kg−1.  相似文献   


14.
The total mercury content in urine was determined by inductively coupled plasma mass spectrometry with the so-called cold vapour method after on-line oxidative treatment of the sample in a microwave oven (FI-MW-CV-ICPMS). Use of a KBr/KBrO(3) mixture, microwave digestion, and the final oxidation with KMnO(4), assure the complete recovery of the organic forms of Hg which would be difficult to determine otherwise if using only the CV-ICPMS apparatus. Quantitative recoveries were obtained for phenyl Hg chloride (PMC), dimethyl Hg (DMM), Hg acetate (MA) and methyl Hg chloride (MMC). Use of automatic flow injection microwave systems (FI-MW) for sample treatment reduces environmental contamination and allows detection limits suitable for the determination of reference values. Since no certified reference materials were commercially available in the concentration ranges of interest, the accuracy of the proposed procedure has been assessed by analysing a series of urine samples with two independent techniques, ICP-MS and AAS. When using the FI-MW-CV-ICP-MS technique, the detection limit was assessed at 0.03microg/L Hg, while with FI-MW-CV-AAS it was 0.2microg/L Hg. The precision of the method was less than 2-3% for FI-MW-CV-ICP-MS and about 3-5% for FI-MV-CV-AAS at concentrations below 1microg/L Hg. These results show that ICP-MS can be considered as a "reference technique" for the determination of total urinary Hg at very low concentrations, such as are present in non-exposed subjects.  相似文献   

15.
A dual stage preconcentration system based on flow injection on-line ion-exchange and solvent-extraction has been developed for flame atomic absorption spectrometry. Lead is taken as a model trace element. A column packed with Amberlite IRC-718 cation exchanger is incorporated into the FI manifold. The analyte is retained on the column by time-based sample loading and eluted by 1 mol/L HNO3. The eluate is subsequently merged with potassium iodide and tetrabutylammonium bromide (TBABr), and isobutyl methyl ketone (IBMK). Lead is extracted on-line into IBMK as the ion-pair formed between the iodoplumbate anion and tetrabutylammonium cation. The organic phase is separated from the aqueous phase by a gravity phase separator. 50 μL of concentrate is introduced into the nebulizer-burner system of the spectrometer. An enhancement factor of 550 is achieved with a 30 mL sample consumption at a sampling frequency of 30/h. The precision (relative standard deviation) is 2.4% at 10 μg/L level and the detection limit is 0.3 μg/L (3 σ). The method was successfully applied to the determination of lead in water samples. Received: 19 March 1997 / Revised: 24 June 1997 / Accepted: 27 June 1997  相似文献   

16.
A dual stage preconcentration system based on flow injection on-line ion-exchange and solvent-extraction has been developed for flame atomic absorption spectrometry. Lead is taken as a model trace element. A column packed with Amberlite IRC-718 cation exchanger is incorporated into the FI manifold. The analyte is retained on the column by time-based sample loading and eluted by 1 mol/L HNO3. The eluate is subsequently merged with potassium iodide and tetrabutylammonium bromide (TBABr), and isobutyl methyl ketone (IBMK). Lead is extracted on-line into IBMK as the ion-pair formed between the iodoplumbate anion and tetrabutylammonium cation. The organic phase is separated from the aqueous phase by a gravity phase separator. 50 μL of concentrate is introduced into the nebulizer-burner system of the spectrometer. An enhancement factor of 550 is achieved with a 30 mL sample consumption at a sampling frequency of 30/h. The precision (relative standard deviation) is 2.4% at 10 μg/L level and the detection limit is 0.3 μg/L (3 σ). The method was successfully applied to the determination of lead in water samples.  相似文献   

17.
严秀平 《化学学报》2001,59(7):987-993
深入系统地讨论了以编结反应器(KR)为吸附介质的流动注射(FI)在线预富集分离与原子光(质)谱联用技术及其在环境和生物样品中(超)痕量元素(形态)分析中的应用。与常用的FI在线C18微柱预富体系相比,KR体系不需填料作吸附剂、反压低、可用较大样品流速以补偿其富集效率低的缺点,并且使用寿命几乎无限长。KR吸附体系具有经济、简便和易操作等优点,是替代常用的FI在线C18微柱预富集的比较理想的体系。  相似文献   

18.
Arsenic(III) can be quantitatively extracted using sodium diethyldithiocarbamate (NaDDTC) as the complexing agent and C18 reversed phase packing as the column material for solid phase extraction. Arsenic(V) must be reduced to its trivalent oxidation state prior to extraction. A mixture of sodium sulphite, hydrochloric acid, sodium thiosulphate and potassium iodide was found to be optimum for on-line reduction. When the sorbent extraction is carried out without and with the addition of the reduction mixture, arsenic(III) and total arsenic can be determined sequentially by graphite furnace atomic absorption spectrometry with detection limits (3 σ) of 0.32 ng for As(III) and 0.43 ng for total arsenic. A 7.6-fold enhancement in peak area compared to direct injection of 40 μl samples was obtained after 60 s preconcentration. Results obtained for sea water standard reference materials, using aqueous standards for calibration, agree well with certified values. A precision of 5.5% RSD was obtained for total arsenic in a sea water sample (1.65 As). Results obtained for synthetic mixtures of trivalent and pentavalent arsenic agreed well with expected values.  相似文献   

19.
In this paper, flame atomic absorption spectrometry was used for the determination of silver in various materials. The proposed preconcentration method is based on the continuous precipitation of silver as p-dimethylaminobenzilidene-rhodanine (PDBR) complex and dissolution of the precipitate with potassium cyanide. EDTA was added to the sample solution to mask large concentrations of Fe(III), Ni(II), Cu(II), Zn(II), Pb(II), Co(II) and Al(III). An enhancement factor of 20 was obtained for a preconcentration time of 3 min, resulting in a sampling frequency of 16 h(-1). The detection limit (3sigma) in the sample solution was 5 ngml(-1). The relative standard deviation at 30 ngml(-1) level was 4.7%. Analytical results obtained for alloy, biological reference material and ore samples analyzed were in good agreement with the certified values and comparable to those obtained with other techniques.  相似文献   

20.
A flow injection system coupled to a tungsten coil electrothermal atomizer has been developed for on-line separation and preconcentration, using lead as a model element. The system utilizes three-way solenoid valves for sampling, buffering, washing and reconditioning solution management, and the resin column is inserted in the tip of the autosampler arm of a Varian GTA-96. The solenoid valves and tungsten coil power supply were controlled by a computer program written in Visual Basic, interfaced with the built-in Varian software. The system performance was tested by loading the resin column with the sample flowing at 3 ml min−1 for 60 s. Elution was performed automatically by sampling 20 μl of the eluent from a sample cup of the autosampler, and this aliquot was delivered into a 150 W tungsten coil. With Chelex-100 resin, the separation of concomitants was tested with lead in the presence of as much as 1000 mg l−1 of Ca, Mg, Na or K. The model system presented an enrichment factor of 64 at a sampling rate of 30 samples per hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号