首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary For the purpose of obtaining suitable reference materials for technical coatings on aluminium, the feasibility of calibration of oxide layers by means of heat extraction was studied. Oxide layers were prepared on aluminium sheets by immersion in water of 50 or 80 ° C and annealing at 500 or 600 °C in argon atmosphere. The layer thickness was calculated from the oxygen content of the sample as measured by carrier-gas heat extraction analysis.The total sputtering yield of aluminium oxide layers was obtained via the correlation of AES depth profiling with heat extraction analysis results. This was demonstrated for high purity (99.9%) and technical purity (98.5%) aluminium with its original roughness from the rolling process, on which 20 to 1,000 nm thick oxide layers had been grown.The sputtering yields for the oxide layers prepared were found to be 3.9±0.8 atoms/ion, i.e., about four times higher than that for -Al2O3. Calibration of depth profiling on such technical quality oxide layers on aluminium was found to be feasible with a relative precision of 10 to 20%.
Kalibrierung der Ionenzerstäubung zur AES-Tiefenprofilanalyse von Oxidschichten auf Aluminium durch Trägergas-Heißextraktion

On leave from the Institute of Photographic Chemistry, Academia Sinica, Beijing, People's Republic of China  相似文献   

4.
In this work, we present a method to obtain quantitative information about the thickness of thin, polycrystalline layers. This non-destructive method is based on Glancing-Incidence X-ray Diffraction (GIXRD) experiments at different incidence angles. At different incidence angles, information about phases lying at different depths is obtained. The diffracted X-ray intensities' dependence on the glancing angle was analyzed and compared with simulations performed by means of a simple optico-geometrical model taking into account the Fresnel coefficients, X-ray absorption, and the effective scattered volume. The depth profile of polycrystalline Au layers was evaluated to test the procedure. The results of the GIXRD and the simulations are in very good agreement with the thickness obtained by means of X-ray reflectivity (XRR) technique.  相似文献   

5.
A model for describing sputter depth profiles on rough surfaces is presented; this is based on the assumption that sputter removal occurs at preferred sites due to the intrinsically rough surface. The progress of sputtering is described by the growth and overlap of statistically distributed holes in the surface layer. Within this assumption the variation of the Auger signal intensity during sputtering is described by simple functions. The model is applied to the sputter removal of oxide layers formed on INCOLOY 800 in hot water.  相似文献   

6.
Amorphous ribbons of Mg-Y-TM-[Ag] (TM: Cu, Ni), prepared by melt spinning, were subjected to electrochemical investigations. Oxide layers formed anodically under potentiostatic control in different electrolytes were investigated by AES and sputter depth profiling. Problems and specific features of characterization of the composition of oxide layers and amorphous ternary or quaternary Mg-based alloys have been investigated. In the alloys the Mg(KL(23)L(23)) peak exhibits a different shape compared to that in the pure element. Analysis of the peak of elastically scattered electrons proved the absence of plasmon loss features, characteristic of pure Mg, in the alloy. A different loss feature emerges in Mg(KL(23)L(23)) and Cu(L(23)VV). The system Mg-Y-TM-[Ag] suffers preferential sputtering. Depletion of Mg and enrichment of TM and Y are found. This is attributed mainly to the preferential sputtering of Mg. Thickness and composition of the formed oxide layer depend on the electrochemical treatment. After removing the oxide by sputtering the concentration of the underlying alloy was found to be affected by the treatment.  相似文献   

7.
8.
La2Zr2O7 (LZO) layers have been recently investigated as potential buffer layers for superconducting YBa2Cu3O7–x coated conductors deposited on Ni tapes. Chemical solution deposition was used for LZO layer preparation. X-ray photoelectron spectroscopy (XPS) depth profiling is demonstrated to be an important method for layer characterization in addition to X-ray diffraction techniques. XPS measurements revealed layers that are homogeneous in depth, very smooth, and have no significant impurities. A slight difference to the nominal La:Zr stoichimetry is discussed in combination with structural defects that are suspected from spectral changes during ion sputtering.  相似文献   

9.
The relative sputtering yield of carbon with respect to tantalum was determined for 1 keV Ar+ ion bombardment in the angular range of 70°–82° (measured from surface normal) by means of Auger electron spectroscopy depth profiling of C/Ta and Ta/C bilayers. The ion bombardment‐induced interface broadening was strongly different for the C/Ta and Ta/C, whereas the C/Ta interface was found to be rather sharp, the Ta/C interface was unusually broad. Still the relative sputtering yields (YC/YTa) derived from the Auger electron spectroscopy depth profiles of the two specimens agreed well. The relative sputtering yields obtained were different from those determined earlier on thick layers, calculated by simulation of SRIM2006 and by the fitting equation of Eckstein. The difference increases with increase of angle of incidence. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The present article describes depth-profiling studies on populations of cubic silver halide microcrystals (typical size between 400 and 600 nm). These crystals consist of mixed halides (Cl, Br, I) and are characterized by internal halide distributions such as core-shell structures. Determination of the spatial distribution of the different halides in the microcrystals offers valuable information for the optimization of the crystal design of new photographic materials. The first part describes the calibration of the sputtered depth, which is more complicated than in the one-dimensional case of flat surfaces. In a second part, three different quantification methods [halide intensity ratios, XCs2+ detection (X=halide) and the infinite velocity method] are used to determine the mean composition of the surface layer as a function of sputtered depth in the silver halide crystals. Although particles of submicrometer size are obviously not the ideal samples for depth profiling, a good correlation with values obtained by scanning electron microscopy energy dispersive X-ray microanalysis and wavelength dispersive X-ray fluorescence bulk analysis could be achieved.  相似文献   

11.
Depth profiling by laser-ionization sputtered neutral mass spectrometry (SNMS) is reviewed. The matrix effects, including surface and interface effects, in laser-ionization SNMS and secondary ion mass spectrometry (SIMS) are compared with each other and discussed. Laser-ionization SNMS can provide depth profiles with much smaller matrix effects than conventional SIMS. Depth resolution can effectively be improved by using grazing incidence for the primary ion beam with little interfacial effect. The quantification method in laser-ionization SNMS is also mentioned.  相似文献   

12.
This paper describes first the application of neutron depth profiling (NDP) for measuring the distribution of6Li in LiAlO2 ceramics. Using a surface barrier detector for detecting3H produced in6Li(n, )3H,6Li was profiled to a depth of 14 m in the ceramics. Secondly, a new methodology is presented for NDP with enhanced capabilities based on measuring the energy of recoiling nuclei from (n, p) and (n, ) reactions by time-of-flight mass spectrometry. The scope of recoil nucleus time-of-flight mass spectrometry (RN-TOF-MS) includes profiling of10B,14N,17O,33S,35Cl,40K. Probe depths may be of a few tens nanometers. RN-TOF-MS complements and refines NDP based on charged particle (p or ) spectrometry.  相似文献   

13.
A compact and mobile single-sided 1H NMR sensor, the NMR-MOUSE®, has been employed in the nondestructive characterization of the layer structure of historic walls and wall paintings. Following laboratory tests on a model hidden fresco, paint and mortar layers were studied at Villa Palagione and the Seminario Vescovile di Sant’ Andrea in Volterra, Italy. Different paint and mortar layers were identified, and further characterized by portable X-ray fluorescence spectroscopy where accessible. In the detached and restored fresco “La Madonna della Carcere” from the Fortezza Medicea in Volterra, paint and mortar layers were discriminated and differences in the moisture content of the adhesive that fixes the detached wall painting to its support were found in both restored and original sections. These investigations encourage the use of the portable and single-sided NMR technology for nondestructive studies of the layer structure and conservation state of historic walls.
Figure
A mobile NMR machine measuring a depth profile into a painted, old wall to unravel the layers from mortar and paint  相似文献   

14.
Molecular time of flight secondary ion mass spectrometry (ToF-SIMS) imaging and cluster ion beam erosion are combined to perform a three-dimensional chemical analysis of molecular films. The resulting dataset allows a number of artifacts inherent in sputter depth profiling to be assessed. These artifacts arise from lateral inhomogeneities of either the erosion rate or the sample itself. Using a test structure based on a trehalose film deposited on Si, we demonstrate that the “local” depth resolution may approach values which are close to the physical limit introduced by the information depth of the (static) ToF-SIMS method itself.  相似文献   

15.
Using a low-energy neutron beam as an isotopic probe, neutron depth profiling (NDP) provides quantitative depth profiles in nearly all solid matrix materials. Several of the light elements, such as He, Li, B, and N can be nondestructively analyzed by NDP. The information obtained using NDP is difficult if not impossible to determine by non-nuclear techniques. As a result, NDP is used collaboratively with techniques such as SIMS, RBS, FTIR, PGAA, and AES. Profiles measured by NDP are given for semiconductor and optical processing materials, and light weight alloys. Improvements in the technique are discussed with emphasis on the use of intense cold neutron beams.  相似文献   

16.
Today in‐depth profiling of microelectronics thin film systems is one of the important applications of Auger electron spectroscopy. It is used to monitor the elemental in‐depth composition after different manufacturing processes to control the quality of these processes. For instance, the layer interdiffusion and reactions with various process gases are analyzed. In addition, interface contaminations have to be controlled, because they strongly influence the properties of the whole thin film system. For polycrystalline layers, the depth resolution of sputter depth profiling is limited by the sputter yield differences attributed to grains having different crystalline orientations relative to the incoming ion beam. If depth profiling can be performed on single grains only, the poor depth resolution caused by these sputter yield differences can be avoided. Unfortunately, the approach works only on a few samples because single grains must be identified and have to have grain sizes that are in the dimensions of the layer thickness. Using methods of in situ sample preparation, however, allows application of single grain depth profiling to an extended range of thin film systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Summary A device has been constructed with which the surface of a specimen can be scanned with a spark drawn from a fixed counter electrode. The mean depth of penetration is of the order of microns and limits of detection of 0.1 ppm are possible. Repeated scanning allows profile analysis, too.
Analyse dünner Schichten mit Hilfe der Funken-Massenspektrometrie
Zusammenfassung Eine Anordnung wurde konstruiert, mit der eine sich drehende Probenoberfläche durch eine feste Gegenelektrode abgetastet werden kann. Die mittlere Eindringtiefe pro Funkenentladung liegt in der Größenordnung von Mikrometern. Nachweisgrenzen von 0,1 ppm sind möglich. Durch wiederholtes Abtasten können auch Profilanalysen durchgeführt werden.
  相似文献   

18.
Secondary ion mass spectrometry (SIMS) depth profiling has been applied to the study of the thermal annealing of ohmic contacts for high electron mobility transistors. The metallic stacks (Ti/Al/Ni/Au) were deposited over the Al0.28Ga0.72N/GaN/sapphire heterostructures and subjected to a rapid thermal annealing (850 °C for 30 s under N2 atmosphere) to improve the contact performance. The surface morphology and the in-depth chemical distribution of the layered contacts were severely modified due to the treatment. These modifications have been analyzed by SIMS depth profiling and scanning electron microscopy–energy-dispersive X-ray microanalysis. The SIMS analysis conditions have been optimized to achieve simultaneously good sensitivity and to avoid ion-induced mixing effects produced by the primary beam sputtering.  相似文献   

19.
The capabilities of a standard multiparametric fitting procedure for extracting concentration profiles from a set of PIXE yield measurements are evaluated for both: real Zn depletion profiles in an initially homogeneous Ag 3 at % Zn alloy, annealed under vacuum, and simulated sinusoidal profiles. The comparison with the profiles obtained via iteration plus smoothing shows that multiparametric fitting is more performing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号