首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by using the bifurcation method (Feng et al, Appl. Math. Comput. 189, 271 (2007); Li et al, Appl. Math. Comput. 175, 61 (2006)).  相似文献   

2.
Solving nonlinear partial differential equations have attracted intensive attention in the past few decades. In this paper, the Darboux transformation method is used to derive several positon and hybrid solutions for the(2+1)-dimensional complex modified Korteweg–de Vries equations. Based on the zero seed solution, the positon solution and the hybrid solutions of positon and soliton are constructed. The composition of positons is studied, showing that multi-positons of(2+1)-dimensional equations...  相似文献   

3.
With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+ 1)-dimensional Boiti-Leon-Pempinelli system (BLP) is derived. Based on the derived solitary wave solution, some novel complex wave localized excitations are obtained.  相似文献   

4.
In this paper, the variable-coefficient diffusion–advection(DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended(G /G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.  相似文献   

5.
刘成仕 《中国物理》2005,14(9):1710-1715
A complete discrimination system for the fourth order polynomial is given. As an application, we have reduced a (1+1)-dimensional dispersive long wave equation with general coefficients to an elementary integral form and obtained its all possible exact travelling wave solutions including rational function type solutions, solitary wave solutions, triangle function type periodic solutions and Jacobian elliptic functions double periodic solutions. This method can be also applied to many other similar problems.  相似文献   

6.
Using the extended homogeneous balance method,the (1 1)-dimensional dispersive long-wave equations have been solved.Starting from the homogeneous balance method,we have obtained a nonlinear transformation for simplifying a dispersive long-wave equation into a linear partial differential equation.Usually,we can obtain only a type of soliton-like solution.In this paper,we have further found some new multi-soliton solutions and exact travelling solutions of the dispersive long-wave equations from the linear partial equation.  相似文献   

7.
In this work, the new analytical exact solution of a highly nonlinear fractional partial differential equation (FPDE) has been presented; specifically space-time fractional (3+1)-dimensional Jimbo–Miwa (JM) equation. As a consequence of the applied extended (G'/G)-expansion method, the new analytical exact solution of the governing equation has been acquired successfully. Moreover, the physical natures of the solutions have been analyzed here by means of numerical simulations.  相似文献   

8.
徐昌智  何宝钢  张解放 《中国物理》2004,13(11):1777-1783
A variable separation approach is proposed and extended to the (1+1)-dimensional physical system. The variable separation solutions of (1+1)-dimensional equations of long-wave-short-wave resonant interaction are obtained. Some special type of solutions such as soliton solution, non-propagating solitary wave solution, propagating solitary wave solution, oscillating solitary wave solution are found by selecting the arbitrary function appropriately.  相似文献   

9.
杨先林  唐驾时 《中国物理》2007,16(2):310-317
Some new exact solutions of an auxiliary ordinary differential equation are obtained, which were neglected by Sirendaoreji {\it et al in their auxiliary equation method. By using this method and these new solutions the combined Korteweg--de Vries (KdV) and modified KdV (mKdV) equation and (2+1)-dimensional Broer--Kaup--Kupershmidt system are investigated and abundant exact travelling wave solutions are obtained that include new solitary wave solutions and triangular periodic wave solutions.  相似文献   

10.
11.
We mainly investigate the rational solutions and N-wave resonance solutions for the(3+1)-dimensional Kudryashov–Sinelshchikov equation, which could be used to describe the liquid containing gas bubbles. With appropriate transformations, two kinds of bilinear forms are derived. Employing the two bilinear equations, dynamical behaviors of nine district solutions for this equation are discussed in detail, including bright rogue wave-type solution, dark rogue wave-type solution, bright W-shaped solution, dark W-shaped rational solution, generalized rational solution and bright-fusion, darkfusion, bright-fission, and dark-fission resonance solutions. In addition, the generalized rational solutions, which depending on two arbitrary parameters, have an interesting structure: splitting from two peaks into three peaks.  相似文献   

12.
This paper studies the Davey–Stewartson equation. The traveling wave solution of this equation is obtained for the case of power-law nonlinearity. Subsequently, this equation is solved by the exponential function method. The mapping method is then used to retrieve more solutions to the equation. Finally, the equation is studied with the aid of the variational iteration method. The numerical simulations are also given to complete the analysis.  相似文献   

13.
In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.  相似文献   

14.
With the help of the similarity transformation and the solvable stationary nonlinear Schrödinger equation (NLSE),we obtain exact chirped and chirp-free self-similar cnoidal wave and solitary wave solutions of the generalized NLSE exhibitingspatial inhomogeneity, inhomogeneous nonlinearity and gain or loss at the same time. As an example, we investigate their propagationdynamics in a nonlinear optical system, and present a series of interesting properties of optical waves.  相似文献   

15.
This paper aims to search for the solutions of the(2+1)-dimensional extended Boiti–Leon–Manna–Pempinelli equation. Lump solutions, breather solutions, mixed solutions with solitons,and lump-breather solutions can be obtained from the N-soliton solution formula by using the long-wave limit approach and the conjugate complex method. We use both specific circumstances and general higher-order forms of the hybrid solutions as examples. With the help of maple software, we create density and 3D graphs...  相似文献   

16.
In this paper, we study soliton–cnoidal wave solutions for the reduced Maxwell–Bloch equations. The truncated Painlev′e analysis is utilized to generate a consistent Riccati expansion, which leads to solving the reduced Maxwell–Bloch equations with solitary wave, cnoidal periodic wave, and soliton–cnoidal interactional wave solutions in an explicit form.Particularly, the soliton–cnoidal interactional wave solution is obtained for the first time for the reduced Maxwell–Bloch equations. Finally, we present some figures to show properties of the explicit soliton–cnoidal interactional wave solutions as well as some new dynamical phenomena.  相似文献   

17.
18.
By the complete discrimination system for the polynomial, we give the classification of single travelling wave solutions to the Camassa–Holm–Degasperis–Procesi equation for some values of the convective parameter.  相似文献   

19.
20.
Shu Yang 《Pramana》2018,90(3):36
Valence universal multireference coupled cluster (VUMRCC) method via eigenvalue independent partitioning has been applied to estimate the effect of three-body transformed Hamiltonian (\(\widetilde{{H}}_3\)) on ionisation potentials through full connected triple excitations \(S_{3}^{(1,0) }\). \(\widetilde{H}_3 \) is constructed using CCSDT1-A model of Bartlett et al for the ground-state calculation. Contribution of transformed Hamiltonian through full connected triples \(\overline{\widetilde{H}_3 S_3^{\left( {1,0} \right) }}\) involves huge amount of computational operations that is time-consuming. Investigation on \(\hbox {Cl}_{2}\) and \(\hbox {F}_{2}\) molecules using cc-pVDZ and cc-pVTZ basis sets shows that the above effect varies from 0.001 eV to around 0.5 eV, suggesting that inclusion of \(\overline{\widetilde{H} _3 S_3^{\left( {1,0} \right) } }\) is essential for highly accurate calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号