首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱德钦  生瑜  苏晓芬  邹寅将 《应用化学》2013,30(10):1107-1113
用甲苯-2,4-二异氰酸酯(TDI)和硬脂酸(SA)复合改性木粉,在双螺杆挤出机中制备了聚丙烯(PP)基的木塑复合材料(WPC),研究了SA/TDI摩尔比对木粉表面性能、复合材料力学性能和加工性能的影响。 结果表明,随着SA/TDI摩尔比的增大,改性木粉的表面张力逐渐减小,与PP的界面张力先减小后增大;与未改性的WPC相比,SA/TDI复合改性剂对WPC的拉伸强度、弯曲强度、缺口冲击强度影响不明显,但对无缺口冲击强度提升较大;当SA/TDI摩尔比为1.07时,复合材料的无缺口冲击强度和熔体质量流动速率分别达到9.74 kJ/m2和13.12 g/10 min,分别比未改性WPC提高了77%和22%。  相似文献   

2.
Natural rubber based composites were prepared by incorporating Wood flour of two different particle size ranges (250–300 µm) and (300–425 µm) and concentrations (15 and 30 phr) into the matrix, using a Banbury® internal mixer according to a base formulation. Curing characteristics of the samples were studied. Influence of particle size and loading of filler on the properties of the composites was analyzed. Results obtained show that the addition of wood flour to natural rubber increased scorch time and curing time and caused improvement in modulus at 300% strain and in tear properties. However, it decreased tensile strength and elongation at break. The particle size range of 300–425 µm was found to offer the best overall balance of mechanical and dynamic properties (tan δ and viscous torque). Swelling behavior of the composites in toluene was also analyzed in order to determine the rubber volume fraction and crosslinking density. Composites with the bigger particle size wood flour were found to have greater crosslinking density than the ones with smaller particle size, fact that could possibly indicate a better rubber-filler interaction in the former. Major percentage of filler increased slightly this interaction. Water absorption behavior of the composites with wood flour reached a maximum of 12% w/w when 30 phr of filler were incorporated; nonetheless, particle size did not affect this property. The ageing study in presence of air at 70 °C revealed that natural rubber composites with wood flour maintained the same classification cell with temperature as the pure rubber. A compound with 30 phr of carbon black was prepared for comparative purposes. Results obtained were as expected. Scorch time decreased and higher values of modulus at 300% strain and tensile strength were achieved, due to strongest interaction between filler and elastomer.  相似文献   

3.
Organomodified montmorillonite (OMMT) was prepared using cetylalkyl trimethyl amine bromide. OMMT and wood flour (WF) were surface-modified by silane coupling agent. They were melt-blended with polyvinyl chloride (PVC) and extruded into wood-plastic composite samples using one conical twin screw extruder. The effects of their contents on the composite mechanical properties were investigated. X-ray diffraction, transmission electron microscopy and scanning electron microscopy observed intercalation and dispersion of the OMMT. FTIR and X-ray photoelectron spectroscopy were used to analyze the silane-modification effects. The possible reaction mechanisms were proposed. After wood flour was modified by 1.5 phr silane, the impact strength and the tensile strength of wood flour-PVC composite were increased by 14.8% and 18.5%, respectively. Mechanical tests showed that the addition of OMMT did not enhance the untreated wood flour-PVC composites. However, adding 0.5% OMMT did improve the mechanical properties of the treated ones. The grafting improved the interfacial compatibility between components producing higher properties of the composites. Further addition of OMMT reinforced the composites. Too higher contents of silane and OMMT impaired some properties because of weak interfacial layer and higher concentrated stress. Cone calorimetry showed that the fire flame retardancy and smoke suppression of composites were strongly improved with the addition of OMMT.  相似文献   

4.
The mechanical properties of Mater-Bi® are, in general, not adequate for certain applications and the addition of a filler is therefore necessary. Among the different fillers, natural fibres are particularly interesting because they potentially allow improving the performance of the material without compromising its biodegradability.In order to improve the basic mechanical properties of a Mater-Bi grade and to obtain a new, fully biodegradable material, wood flour based composites were prepared by different processing methods. To simulate actual and not laboratory bacterial attack on the prepared materials, in this work we studied the biodegradation of the composites in a real active sewage sludge reactor. In particular, the biodegradation rates were investigated with reference to different pre-treatments of the materials and different environmental conditions (summer and winter). The results showed that wood flour enhances the biodegradability of the materials. The results indicated also strong relationships between the surface roughness and the biodegradation rates (in particular, higher roughness leads to wider bacterial attack). The different processing techniques had direct effects on the overall biodegradation rates. In particular, when higher smoothness and packing is achieved, the biodegradation rate is lower. The mechanical analysis indicated that adding wood flour to Mater-Bi has positive effects on the elastic modulus, but when the bacterial attack becomes critical, a general sudden drop of the mechanical properties is observed.  相似文献   

5.
The research article focused on the effect of wood sawdust as secondary filler reinforcement in Indian mallow fiber yarn mat reinforced with polyester composites. Composites were fabricated along the transverse and longitudinal orientation in six different combinations by compression molding machine. The mechanical properties of composites by single and double layer yarn mat with and without wood sawdust filler were evaluated while loading composites specimen on warp and weft direction at the first time in this research paper. The Indian mallow fiber double layer longitudinal orientation yarn mat/wood sawdust filler/polyester composite specimen along the warp direction was found to exhibit optimum mechanical properties compared to other composites. Furthermore, the Indian mallow fiber yarn mat composites were fabricated with helmet and civil construction pipes at first time in this work to replace the synthetic fiber through natural fiber. Scanning electron microscopy was performed to study the morphologies of internal crack and fractured surface of composites.  相似文献   

6.
Most physical properties of a wood plastic composite (WPC) with poly(vinyl chloride) (PVC) matrix are lower than those of corresponding neat PVC because of poor interfacial adhesion between hydrophobic PVC and hydrophilic wood. In this study, to improve the interfacial adhesion, wood flour was pre‐treated with N‐2(aminoethyl)‐3‐aminopropyltrimethoxysilane, and the surface modification was characterized and confirmed by X‐ray photoelectron spectroscopy (XPS). Furthermore, to improve the performance of PVC/wood composites, a type of organoclay was added as nanofiller. PVC/wood/clay composites were prepared by melt blending a heavy metal‐free PVC compound, the aminosilane‐treated wood flour, and the organoclay, and their physical properties were tested by universal testing machine and thermal gravimetric analyzer. X‐ray diffractometer (XRD) analyses of the WPCs showed an intercalated structure of the organoclay. The scanning electron microscope images for the fracture surfaces of the WPCs confirmed the positive effect of the aminosilane pre‐treatment by showing reduced debonding of wood flour from the PVC matrix. The performance of the WPCs was improved by the aminosilane pre‐treatment of the wood flour and the organoclay. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Accelerated weathering of polypropylene/wood flour composites   总被引:3,自引:0,他引:3  
Wood-plastic composites (WPCs) have received increasing attention during the last decades, because of many advantages related to their use. Some of their main applications are represented by outdoor furnishing and decking; therefore, it is important to assess their behaviour under UV exposure. In this work, polypropylene/wood flour composites were prepared and their resistance to photooxidation investigated. The composites were prepared by extrusion and compression moulding, and were subjected to mechanical tests, FTIR analysis and molecular weight measurements. The results showed that the composites retained a higher fraction of the original mechanical properties after accelerated weathering; the wood flour did not significantly degrade throughout the irradiation time slot of the investigation and the composites kept a higher percentage of the original molecular weight.  相似文献   

8.
In this study, the effect of acid‐treated wood fiber modifications on the mechanical behaviors of HDPE/ABS blend is investigated. Wood fiber/HDPE/ABS composites were fabricated by incorporating acid‐treated wood fiber into HDPE/ABS blends. The results showed that both the tensile strength and flexural strength of wood fiber/HDPE/ABS composites were greater than those of HDPE/ABS blend, regardless of wood fiber modification. The results also showed that the impact strength of HDPE/ABS composites is improved by the addition of wood fiber. Scanning electron microscopic (SEM) examination of fractured surfaces showed that the improvement in the mechanical properties of the wood fiber/HDPE/ABS composites was attributed to the improved dispersion of wood fiber in the HDPE/ABS and the better interfacial characteristics caused by the acid treatment of the wood fiber.  相似文献   

9.
朱德钦  生瑜  童庆松  王真 《应用化学》2014,31(8):885-891
在转矩流变仪中用熔融接枝法制备马来酸酐(MAH)和苯乙烯(St)接枝聚丙烯(PP)-PP-g-(MAH/St)和PP-g-MAH,将其作为聚丙烯/木粉复合材料的相容剂。 FTIR证实MAH和St单体与PP发生接枝反应。 用SEM和DSC等手段考察两种相容剂对PP/木粉复合材料微观形貌和结晶性能的影响,探索了各种PP/木粉复合材料加工和力学性能不同的内在原因。 SEM显示,PP-g-(MAH/St)改性木粉比PP-g-MAH改性木粉在PP基体中分散性更佳,木粉与PP的界面更加模糊,相容性进一步改善。 DSC结果表明,PP-g-(MAH/St)改性体系可增强木粉对PP的异相成核作用,提高结晶温度和结晶度。 复合材料的加工和力学性能测试结果表明,PP-g-(MAH/St)改性效果明显优于PP-g-MAH。 复合材料的熔体质量流动速率随相容剂用量的增加而逐步下降,PP-g-(MAH/St)改性体系拉伸强度和弯曲强度却逐步上升,并在相容剂用量为4.8 g/100 g PP时达到极值。 此时其拉伸强度达40.62 MPa,分别是未改性体系和PP-g-MAH改性体系的1.29和1.17倍;其弯曲强度达45.72 MPa,分别是未改性体系和PP-g-MAH改性体系的1.23和1.59倍;而无缺口冲击强度却在相容剂用量为3.6 g/100 g PP时达到极值13.35 kJ/m2,分别是未改性体系和PP-g-MAH改性体系的1.62倍和1.42倍。  相似文献   

10.
In the present decade, the demands for recyclable, environmentally friendly and low-cost with good strength composites materials have been significantly increased. In this context, the particulate wood polymer composites have attracted the researchers owing to their eco-friendliness, low-cost as they are prepared using waste wood particles, and good mechanical and physical properties. These composites were prepared by filling the waste wood particles into the polymers using different fabrication methods such as extrusion, hand layup, compression moulding, injection moulding and additive manufacturing (3D printing). A good number of research works have been reported on the testing and characterization of wood composites for the various applications so far. This fact motivated to prepare a state-of-the-art review on the recent developments in processing, characterization, and applications of wood composites. This paper presents a discussion on the chemical structure and properties of different types of wood species. The mechanical, thermal and water absorption behaviour of thermosets, thermoplastics and biopolymers based wood composites have also been discussed. Further, characterization of the nano biocomposites prepared using nanocellulose/nanoparticles of wood are also presented. The outcomes of the present review provide a good understanding of wood composites that will encourage the researchers for further research works & developments of novel wood composites for the advanced applications.  相似文献   

11.
Flammability of wood-polypropylene composites   总被引:1,自引:0,他引:1  
Addition of wood particles to polymers can cause a change of properties of the composites which depends on features of lignocellulosic materials and those of polymers. It is also observed in the flammability characteristics of the composites.In this work, the flammability of polypropylene composites with pine wood particles obtained by extrusion and press moulding was analyzed. The amount of wood particles was 50%. Polymers with various melt flow index (MFI) were used (Malen F-401, PP HY-202 and Malen S-702).The samples were tested using Cone Calorimeter at heat flux of 35 kW/m2. Heat release rate (HRR) curves of composites show that thermal decomposition depends on the kind of polypropylene used. In the presence of PP HY-202 and Malen S-702, the flammability characteristic is similar to that of lignocellulosic materials, in contrast to composites with matrices prepared from Malen F-401. The observed phenomenon is interpreted in terms of the wettability of particles of pine wood by polymers of varying melt viscosity.  相似文献   

12.
CaCO3/PEEK复合体系的力学行为和热行为研究   总被引:7,自引:0,他引:7  
以聚醚醚酮和碳酸钙复合体系为研究对象,考察了偶联剂和填料添加量对复合材料力学行为和热行为的影响.发现磺化聚醚醚酮作为偶联剂能有效地改善材料的力学性能,提高基体树脂的玻璃化转变温度,降低基体树脂的熔点,有助于改善聚醚醚酮的加工条件  相似文献   

13.
The aim of this study was to investigate the effects of maleic anhydride-graft-polypropylene (MA-g-PP) as a compatibilizer and wood fiber as a lignocellulosic filler on technical properties of poly(l-lactic acid) (PLLA)/polypropylene composites. The obtained composites were characterized through mechanical tests, thermogravimetric analysis, differential scanning analyzer, and chemical analysis via Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The obtained results showed that the mechanical properties of the composites containing MA-g-PP were higher than those of the composites without MA-g-PP. SEM images revealed that the morphological properties of the composites including PP and PLLA were improved. The chemical interactions between PP and PLLA were demonstrated through FTIR results of composites with MA-g-PP.  相似文献   

14.
This work investigated thermal neutron shielding, cure characteristics and mechanical properties of natural rubber (NR) and wood/NR composites with addition of either boron oxide (B2O3) or boric acid (H3BO3) for potential use as flexible shielding materials. The results showed that increase in the B2O3 or H3BO3 content from 0 to 80 phr and 0–50 phr in 10-phr increments, respectively, could improve thermal neutron shielding properties but reduced overall tensile properties, while the addition of 20-phr wood particles in wood/NR composites improved surface hardness and dimensional stability. Furthermore, the values of the Half Value Layer (HVL), which represent the required thickness of material to attenuate half of the incoming neutrons, were evaluated at a content of 80-phr B2O3 by varying thickness of both NR and wood/NR composites from 2.5 mm to 20.0 mm in 2.5-mm increments. The results indicated that the HVL values were approximately the same at 3.5 mm. Hence, the overall properties investigated in this work suggested great potential of these composites to be used as effective thermal neutron shielding materials.  相似文献   

15.
PP/PA66原位复合材料的增强和增韧效应   总被引:8,自引:0,他引:8  
用挤出 拉伸 注塑法制得了增强又增韧的PP PA66原位复合材料 ,以未经拉伸的普通共混材料作对照 ,研究了PA66质量含量 (cd)对材料相形态和力学性能的影响及其作用机制 .结果表明 ,当cd 由 0 %增至2 0 %时 ,原位形成的PA66纤维数量增多 ,纤维直径及其分散性以cd =1 5 %为界先减小后增大 ,残留的PA66粒子数也增多 ;纤维数量的增多和纤维网络的发展导致材料冲击强度持续增高 ;纤维及粒子对基体的增刚作用使材料杨氏模量增高趋于极限值 ;受分散相对基体增强效应和两相弱粘结界面缺陷效应的综合影响 ,材料的拉伸强度以cd =1 5 %为界先增高后降低  相似文献   

16.
Citric acid was used as the cross-linker to prepare the sustainable wood starch nanocomposites (WSNC) from the renewable resources like starch and soft wood flour using water as the solvent. Nano SiO2 was employed to develop the physicochemical properties of the WSNC via a green path. In this process, starch was grafted with methylmethacrylate (MMA) and SiO2 was modified with N-cetyl-N,N,N-trimethyl ammonium bromide. Three different percentage of modified nano SiO2 (1–5 phr) were employed in the preparation of the composites and their properties were characterized by Fourier transform infrared spectroscopy. The morphological features of the composites were investigated through transmission electron microscopy and scanning electron microscopy study. Mechanical and dynamic mechanical properties like storage modulus, loss factors and tan δ value of the composites were thoroughly investigated. Thermal stability, water resistance and flammability of the composites were significantly improved after incorporation of modified SiO2. The maximum improvements in properties were achieved containing 3 phr modified SiO2 composites.  相似文献   

17.
廖兵  黄玉惠 《应用化学》1996,13(5):64-66
接枝改性木纤维对聚氯乙烯/木纤维复合材料力学性能的影响廖兵,黄玉惠,赵树录,林果,丛广民(中国科学院广州化学研究所广州510650)关键词木纤维,聚氯乙烯/木纤维复合材料,接枝木纤维可作塑料的增强填料,但它与塑料的界面亲合性差,须进行改性,改善表面亲...  相似文献   

18.
This paper discloses a feasible and high efficient strategy for wood fiber treatment to introducing multi‐wall carbon nanotubes (MWCNTs) to the surface of wood fibers for the aim of improving the interfacial shear strength of wood fiber/epoxy composite. Briefly, a layer of MWCNT was deposited on wood fibers through sizing wood fibers with epoxy sizing agent containing amine‐treated MWCNTs (MWCNT‐PEI). The surface functional groups, morphology, wettability, and interphase properties of MWCNTs on the surface of wood fiber were studied. The remarkable enhancements were achieved in interfacial shear strength of reinforced composites by dipping wood fiber in MWCNTCOOH suspension and wood fiber sizing containing MWCNT‐PEI.  相似文献   

19.
Wood fibers with high lignin content show promise to function in numerous applications with advantageous properties if the fiber features are appropriately exploited. The present study introduces a new approach to disintegrate and disperse wood fibers from groundwood pulp (GWP) directly to polyol without additional solvent exchanges or chemical modifications. In comparison bleached chemical pulp with low lignin content was ground in the polyol, but only low consistency (1 wt%) operation was possible, whereas up to 5 wt% consistency with GWP was carried out with ease. The micron sized fibers in polyol were reacted with polymeric diphenylmethane diisocyanate to produce fiber reinforced biopolyurethane (bioPU) composites. The mechanical properties of the composites improved compared to reference bioPU showing 14.6% increase in Young’s modulus, 54.5% in tensile strength and 26.1% in strain at break. The tan δ peaks shifted to higher temperature from 5.5 to 10.4 °C when fibers up to 5.1 wt% were incorporated to bioPU. Overall, the bulk microfibers from GWP with low degree of processing were cost-effective reinforcements for bioPUs, which improved the qualities of the fabricated composites and showed good compatibility with polyurethane.  相似文献   

20.
为改善聚氯乙烯(PVC)和木纤维两者的界面亲合性,提高PVC/木纤维复合材料的机械力学性能,分别用硬脂酸和ABS来改性木纤维的表面,研究发现用硬脂酸处理木纤维可提高复合材料的拉伸强度,但对复合材料的冲击强度影响不大.ABS处理木纤维可同时提高复合材料的拉伸强度和冲击强度。本文也研究了改性剂用量和木纤维含量对复合材料力学性能的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号