首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphate removal from aqueous solution was investigated using ZnCl2-activated carbon developed from coir pith, an agricultural solid waste. Studies were conducted to delineate the effect of contact time, adsorbent dose, phosphate concentration, pH, and temperature. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. Langmuir adsorption capacity was found to be 5.1 mg/g. Adsorption followed second-order kinetics. The removal was maximum in the pH range 3–10. pH effect and desorption studies showed that adsorption occurred by both ion exchange and chemisorption mechanisms. Adsorption was found to be spontaneous and endothermic. Effect of foreign ions on adsorption shows that perchlorate, sulfate, and selenite decreased the percent removal of phosphate.  相似文献   

2.
纳米羟基磷灰石/胶原复合材料制备方法比较研究   总被引:4,自引:0,他引:4  
低温下,通过将水热合成的纳米羟基磷灰石浆料与中性胶原溶胶共混和在中性胶原中原位形成羟基磷灰石两种方法制备羟基磷灰石/胶原复合材料,采用XRD、FTIR、扫描电镜、透射电镜和力学性能测试等方法对两种复合材料的特性进行了表征。通过对两种方法制备的复合材料的特性进行比较,发现两种方法均制备得到了纳米羟基磷灰石/胶原复合材料,复合材料在晶相组成、化学组成、纳米羟基磷灰石晶体尺寸、胶原纤维的结构等方面都与天然骨相似。但原位合成纳米羟基磷灰石晶体的结晶度比水热合成的纳米羟基磷灰石更接近于自然骨,原位合成的羟基磷灰石/胶原复合材料的均匀性、界面结合紧密度、力学性能等方面均优于共混法。原位合成法是改善纳米羟基磷灰石/胶原复合材料均匀性和力学性能的有效方法。  相似文献   

3.
In this paper, nanofibrillated cellulose/carboxymethyl cellulose (CMC) composite films were prepared using tape casting. The obtained transparent films showed shear induced partial alignment of fibrils along the casting direction, resulting in birefringence in cross polarized light. The carboxyl groups of CMC could be further utilized to create ionic crosslinking by treatment with glycidyl trimethyl ammonium chloride (GTMA). The GTMA treated composite films had improved mechanical properties both in wet and dry state. The chemical composition and morphologies of composites were analyzed with X-ray photoelectron spectroscopy, elemental analysis, scanning electron microscopy and wide-angle X-ray scattering.  相似文献   

4.
Coir pith obtained from the coir industry as waste biomass was used to prepare activated carbon by chemical activation using phosphoric acid (H3PO4). The influences of activation temperature and lasting time of activation on specific surface areas (SSA) of the activated carbons were observed. Physical characteristics of the activated carbon were investigated using X-ray diffraction (XRD), infra-red spectroscopy (IR), surface area analyzer, scanning electron microscopy (SEM), thermal analysis and potentiometric titration. The feasibility of using activated carbon for the removal of phenol (P), p-chlorophenol (PCP) and p-nitrophenol (PNP) from water and petroleum refinery industry effluents was investigated. The effects of contact time, adsorbent dose, ionic strength and initial concentration on the adsorption of phenols onto the activated carbon were investigated. The optimum pH for the maximum removal of phenols was 6.0. The equilibrium adsorption data of phenols were correlated to Langmuir and Freundlich isotherm models, the latter being the best fit of the experimental data. Dynamics of the sorption process and mass transfer were investigated using McKay and Urano-Tachikawa models. Adsorption kinetic data fits the Urano-Tachikawa kinetic model. The utility of the adsorbent was tested by using petroleum refinery industry effluent. The adsorbed phenols can be recovered by treatment with 0.1 M NaOH solution.  相似文献   

5.

The objective of this work is the use of cellulose fibers extracted from coir fibers as Janus nanocylinders to suppress the phase retraction and coalescence in poly(lactic) acid/polypropylene bio-blend polymers via prompting the selective localization of cellulose fibers at the interface using chemical modification. The untreated and modified cellulose fibers extracted from coir fibers using a silane molecule (tetraethoxysilane) were used as reinforcement and as Janus nanocylinder at two weight contents (2.5 wt% and 5 wt%) to manipulate the morphology of the bio-blends. Their bio-composites with PLA-PP matrix were prepared via melt compounding (at PLA/PP: 50/50). The treatment effect on component interaction and the bio-composites properties have been studied via Scanning electron microscopy, infrared spectroscopy, and differential calorimetry analysis. The mechanical and rheological properties of nanocomposites were similarly assessed. Young's modulus and tensile strength of PLA-PP nanocomposites reinforced by silanized cellulose fibers show a great enhancement as compared to a neat matrix. In particular, there was a gain of 18.5% in Young's modulus and 11.21% in tensile strength for silanized cellulose fiber-based bio-blend composites at 5 wt%. From the rheological point of view, it was found that the silanized cellulose fibers in PLA-PP at both fibers loading enhances the adhesion between both polymers leading to tuning their morphology from sea-island to the continuous structures with the appearance of PLA microfibrillar inside of bio-composites. This change was reflected in the relaxation of the chain mobility of the bio-blend composites.

  相似文献   

6.
利用射频感性耦合冷等离子体(ICP)处理技术改性连续纤维表面,分别采用X射线光电子能谱(XPS)、原子力显微镜(AFM)及动态接触角分析(DCA)系统研究了等离子体处理时间、放电气压、放电功率等工艺参数对连续碳纤维、芳纶纤维和对亚苯基苯并二噁唑(PBO)纤维的表面化学成分、表面形貌、表面粗糙度及表面自由能的影响.研究结...  相似文献   

7.
以钛酸四丁酯为源, 采用苯胺-丙酮原位生成水溶胶-凝胶法, 在乙醇超临界干燥过程中用部分水解的钛醇盐和硅醇盐对TiO2凝胶进行超临界修饰制备了具有核/壳纳米结构的块体TiO2/SiO2复合气凝胶. 制备的复合气凝胶具有优异的机械性能, 其杨氏模量可达4.5 MPa. 复合气凝胶同时具有极好的高温热稳定性. 经过1000 ℃热处理后, 线性收缩由纯TiO2气凝胶的31%降至复合气凝胶的10%, 且比表面积由纯TiO2气凝胶的31 m2·g-1提升至复合气凝胶的143 m2·g-1. 此外, 该复合气凝胶经1000 ℃热处理后具有优异的光催化降解亚甲基蓝的性能. 其优异的光催化性能得益于TiO2/SiO2复合气凝胶1000 ℃处理后高的比表面积和小的颗粒尺寸. 优良的耐热性能、力学性能和光催化性能使获得的具有核/壳纳米结构的TiO2/SiO2复合气凝胶在光催化领域具有良好的应用前景.  相似文献   

8.
Orthodiphenol oxidoreductase, ODOR (E.C.I.10.3.1) from potato tubers (Solanurn tuberosum) has been purified on coir pith lignin by affinity chromatography. All isozymes get adsorbed and can be eluted with 70% recovery. The enzyme shows high purity, as judged by specific activity and polyacrylamide gel electrophoresis.  相似文献   

9.
以苯胺为原料,采用原位聚合法在聚四氟乙烯(PTFE)基体上合成聚苯胺/聚四氟乙烯(PANI/PTFE)复合膜.利用光学显微镜、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、紫外-可见吸收光谱(UVVis)和静态水接触角测试对PANI/PTFE复合膜的形貌、结构和浸润性进行分析,并对其油包水乳液分离性能、通量和循环使用性能进行了测试.研究结果表明,PANI/PTFE复合膜仅在重力条件就能有效分离油包水乳液;而且重复数十次过滤后,PANI/PTFE复合膜仍具有良好的抗污能力和分离性能.  相似文献   

10.
本文通过磺化石墨烯对Nafion膜进行改性,研究了磺化石墨烯/Nafion复合膜(GRS-Nafion复合膜)的吸水率、电阻率和钒离子迁移数. 结果表明,经磺化石墨烯改性之后,GRS-Nafion复合膜的面电阻和钒离子渗透率显著降低. 全钒液流电池的测试结果表明,GRS-Nafion复合膜有着更加优异的电化学性能,展示出GRS-Nafion复合膜在液流电池中的应用潜力.  相似文献   

11.
In the present work, tamarind fibers were extracted from ripened fruits by the water retting process. Using these fibers as reinforcement and unsaturated polyester as matrix, composite samples were prepared by the hand lay-up technique. The effect of chemical surface treatments (alkali and silane) of tamarind fibers on the mechanical properties, chemical resistance, and interfacial bonding was studied. The mechanical properties of the composites with surface modified fibers were found to be higher than those with unmodified fibers. Morphological studies indicated improvement of interfacial bonding by alkali and silane coupling agent treatments of the fibers. The composites were found to be resistant to many chemicals.  相似文献   

12.
Interface is an important microstructure for advanced polymer‐matrix composite. The composite interface is the bridge and the link for stress transferring between the fiber and the matrix resin. In this work, oxygen plasma treatment was used for modification of aramid fiber surface. The effects of plasma treatment power on interlaminar shear strength of composite were evaluated by short‐beam shear test. The morphologies of both the aramid fiber surface and its composite interface fracture were observed by SEM. The chemical structure and surface chemical composition of the plasma‐treated and separated fibers were analyzed by Fourier transform infrared (FTIR) and XPS, respectively. The results showed that the interlaminar shear strength of composite was enhanced by 33% with plasma treatment power of 200 W. The FTIR and XPS results indicated that the active functional groups were introduced onto the aramid fiber surface by plasma treatment forming chemical bonds with the poly(phthalazinone ether sulfone ketone) resin. The SEM results proved that the aramid fiber surface was roughened by plasma treatment enhancing the mechanical bond with the poly(phthalazinone ether sulfone ketone) resin. The composite rupture occurred from the composite interface to the fiber or the matrix resin. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Lignocellulosic fibers, such as henequen, sisal, coconut fiber (coir), jute, palm and bamboo, have been used as reinforcement materials for different thermosetting and thermoplastic resins because of their attractive physical and mechanical properties. Unlike the traditional engineering fibers, e.g. glass and carbon fibers, and mineral fillers, these lignocellulosic fibers are able to impart certain benefits such as low density, less machine wear, no health hazards, and a high degree of flexibility to the composite. The last attribute is especially true because these lignocellulosic fibers will bend rather than fracture, like glass fibers do, during processing of the composite. The mechanical properties and fracture behavior of a natural fiber reinforced polymer composite depend, not only on the properties of constituents, but also on the properties of the region surrounding the fiber, known as the interphase, where the stress transfer takes place. Moreover, the tailoring of the interphase by means of surface treatments, and carefully characterizing it, gives a better understanding of the performance of natural-fiber reinforced composites. The fracture toughness resulting from the use of natural fibers as reinforcing materials is quite different between ductile and brittle polymers, as well as between quasi-static and impact loading rates. The aim of this paper is to study the effect of the interphase properties, resulting from well controlled surface treatment of the natural fibers, on the behavior of a ductile polymer matrix composite under quasi-static loading using the essential work of fracture criteria. Specifically, the contribution of each of the different fiber-matrix interfacial adhesion levels towards the dissipation energy were analyzed and discussed. In the case of the plastic work βwp, there seems to be a synergy between the frictional and chemical interactions observed for both, low and high strain rates. The nonlinear mechanical behavior of the natural fiber under combined tensile-shear loads has also an effect on the fracture behavior of the composite. Additionally, different fiber surface treatments change the microstructural nature of the natural fiber, further affecting its behavior, particularly under high loading rates.  相似文献   

14.
In this work, the sugarcane bagasse (SCB) fibers were used as reinforcing filler for recycled high density polyethylene (rHDPE) to form eco-friendly composite. The SCB surface was chemically modified to improve the compatibility with rHDPE matrix. The SCB fibers were alkali modified using 10% sodium hydroxide (SCBm) and acetylated using acetic anhydride (SCBac). The chemically modified SCB fibers were characterized using Fourier transform infrared (FTIR) and scanning electronic microscopy (SEM). The composites were prepared by mixing of rHDPE with 15 phr (parts per hundred parts rHDPE) of different SCB samples. Neat rHDPE and its composites with SCB were irradiated by gamma radiation dose of 50–250 kGy. The Effect of gamma radiation on the water up-take, mechanical properties and the thermal stability of (rHDPE) and its composites was studied. The effect of gamma radiation on the compatibility between rHDPE and SCB was also investigated. The results showed that the combination between the chemical modification of fibers and the irradiation of polymer composites were more effective in compatibility improvement than chemical modification alone. The irradiated (at 100 kGy) composite containing of SCBac gave the best mechanical properties, lowest water up-take and the highest thermal stability.  相似文献   

15.
对狼尾草茎秆进行拉伸性能测试和长径比测量、并进行X射线衍射图谱、红外光谱和热重分析,分别以三种粒径(40目、60目、80目)狼尾草茎秆纤维为填充材料,以聚丙烯(PP)为基体材料,使用模压成型工艺制备三种不同粒径的狼尾草/PP复合材料。对制备的复合材料进行了接触角测量、吸水性能和力学性能测试,并用扫描电子显微镜(SEM)观察了复合材料拉伸断面微观结构。结果表明:狼尾草茎秆纤维素类型为I型,相对结晶度为44%;40目、60目和80目三种目数狼尾草/PP复合材料24h吸水厚度膨胀率分别为7.7%、4.2%和4.4%;其中40目狼尾草/PP复合材料有较好的结合界面和较好的力学性能,其拉伸强度、弯曲强度、弯曲模量和冲击强度分别为10.47MPa、15.98MPa、1.9GPa和3.7kJ/m2。由此得知,40目狼尾草/PP复合材料力学性能最好,但吸水性较强;60目狼尾草/PP复合材料具有较好的力学性能和一定的抗吸水性,综合性能最佳。  相似文献   

16.
改性UHMWPE纤维/乙烯基酯树脂复合材料的研究   总被引:7,自引:1,他引:6  
超高分子量聚乙烯纤维在过氧化物引发下,通过硅烷进行接枝改性。研究了改性纤维/乙烯基酯树脂复合材料的界面性能。采用层间剪切强度、扫描电镜、红外光谱(ATRIR)及浸润性测试等分析手段表征了接枝改性的效果。结果表明,经过硅烷接枝改性,改善了超高分子量聚乙烯纤维对乙烯基酯树脂的浸润性,提高了纤维与基体之间的粘结性,使复合材料的层间剪切强度大幅度提高。  相似文献   

17.
欧阳君君  周莉 《应用化学》2012,29(9):995-999
以NaCl为致孔剂,采用溶盐致孔法制备了多孔β-磷酸三钙/壳聚糖/聚乙烯醇(β-TCP/CS/PVA)复合水凝胶材料。 通过对比其含水率、溶胀比、拉伸强度、X射线衍射谱图、SEM和热重分析曲线,探讨了在相同环境下壳聚糖与β-磷酸三钙(β-TCP)的不同用量对聚乙烯醇(PVA)的结晶度以及对材料性能的影响。 此复合材料含水率为70%~76%。 当壳聚糖与β-TCP的质量比为2∶8时,复合材料的拉伸强度为0.56 MPa,断裂伸长率达到370%,其较好的力学性能,足以承受正常人眼压,可用作人工角膜周边支架材料。  相似文献   

18.
We describe a new family of composite materials, polymer/organic nanocrystal (ONC) hybrids. These were prepared from soluble ONCs based on perylene diimides (PDI) and water‐soluble polymers (sodium alginate and polyvinyl alcohol). Polymer/ONC films were characterized by optical spectroscopy, electron microscopy, and tensile strength studies. The films show enhanced chemical and mechanical stability due to synergy between the constituents. The hybrid films are stable in both water and organic solvents, unlike the individual components. The ONCs we employed possess nonlinear optical activity (second harmonic generation, SHG); they showed improved photostability (stable SHG under laser light) in the hybrids. Tensile strength enhancement (as high as twofold in the film having just 2.4% ONCs by weight) was observed as revealed by mechanical measurements. Hybrids with aligned ONCs were also prepared using simple extrusion via syringe needle followed by gelation. Employing ONCs in polymeric hybrid materials enables facile fabrication in aqueous media, synergy, chemical, mechanical, and photostability as well as useful photofunction (SHG), introducing a versatile class of composite materials.  相似文献   

19.
Corn stover has potential as a resource for both fiber and chemical needs if separation strategies can be developed to deal with its heterogeneity. Relative hydrolysis characteristics were assessed for pith (sclerenchyma and parenchyma) and fiber (collenchyma) tissue fractions derived from mechanical separation of corn stover to determine whether classification by tissue type resulted in fractions with different hydrolysis response. The physical characteristics of the tissue fractions were analyzed. The hydrolysis behavior of the fractions was evaluated under both acidic and basic conditions. The results from the hydrolysis experiments are compared with previously reported compositional analysis for the tissue fractions.  相似文献   

20.
Changes in the crystal structure and composition of aluminum and graphite powder mixtures in the course of their joint mechanical treatment in a vibration mill were monitored by the adsorption and X-ray diffraction techniques. It was shown that, at absorbed energy doses of 8–10 kJ/g, the grinding and mixing of aluminum with graphite is completed by the formation of an intermediate structure of Al/C composite, where aluminum showed an anomalously high reactivity. The interaction of aluminum with water was used to study its reactivity in the composite. The formation of the composite preceded the stage of chemical interaction between carbon and aluminum atoms.Translated from Kolloidnyi Zhurnal, Vol. 66, No. 6, 2004, pp. 811–818.Original Russian Text Copyright © 2004 by Streletskii, Kolbanev, Borunova, Leonov, Butyagin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号