首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The processability of ultrahigh molecular weight polyethylene (UHMWPE) improved by oligomer-modified calcium carbonate (CaCO3) was observed in our previous work. In order to understand the effect of oligomer-modified CaCO3 on the crystallization of UHMWPE, the non-isothermal crystallization behavior and crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3 was studied by differential scanning calorimetry in this work. Jeziorny and Mo methods were used to describe the non-isothermal crystallization kinetics of UHMWPE composites. The effect of modified filler content and cooling rate on the crystallization temperature and crystallization rate was discussed. The heterogeneous nucleation of modified CaCO3 slightly increases the crystallization temperature of UHMWPE. The crystallization enthalpy of UHMWPE composites is significantly higher than that of UHMWPE. The crystallization rate of UHMWPE composites depends on the filler contents and cooling rate.

  相似文献   

2.
The non-isothermal crystallization kinetics of polyethylene (PE), PE/organic-montmorillonite (Org-MMT) composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples very well. The difference in the exponent n between PE and PE/Org-MMT nanocomposites, indicated that non-isothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PE and PE/Org-MMT composites, but the crystallization rate of PE/Org-MMT composite was faster than that of PE at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PE very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PE/Org-MMT was greatly larger than that of PE. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In this study, the effects of crystallization conditions (cooling rate and end temperature of cooling) on crystallization behavior and polymorphic composition of isotactic polypropylene/multi‐walled carbon nanotubes (iPP/MWCNTs) composites nucleated with different concentrations of β‐nucleating agent (tradename TMB‐5) were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD) and scanning electronic microscopy (SEM). The results of DSC, WAXD and SEM revealed that the addition of MWCNTs and TMB‐5 evidently elevates crystallization temperatures and significantly decreases the crystal sizes of iPP. Because of the competition between α‐nucleation (provided by MWCNTs) and β‐nucleation (induced by TMB‐5), the β‐phase crystallization takes place only when 0.15 wt% and higher concentration of TMB‐5 is added. Non‐isothermal crystallization kinetics study showed that the crystallization activation energy ΔE of β‐nucleated iPP/MWCNTs composites is obviously higher than that of pure iPP, which slightly increases with the increase of TMB‐5 concentration, accompanying with the transition of its polymorphic crystallization behavior. The results of non‐isothermal crystallization and melting behavior suggested that the cooling rate and end temperature of cooling (Tend) are important factors in determining the proportion and thermal stability of β‐phase: Lower cooling rate favors the formation of less amount of β‐phase with higher thermal stability, while higher cooling rate encourages the formation of higher proportion of β‐phase with lower thermal stability. The Tend = 100°C can eliminate the β–α recrystallization during the subsequent heating and therefore enhance the thermal stability of the β‐phase. By properly selecting TMB‐5 concentration, cooling rate and Tend, high β‐phase proportion of 88.9% of the sample was obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
以碳纤维(CF)为填料,聚偏氟乙烯(PVDF)为基体,通过熔融共混法制备PVDF/CF导电复合材料.所得复合材料具有显著的正温度系数(PTC)效应,温度上升到聚合物熔点附近时,电阻率对温度变化敏感.在转折温度区间(155.5~171.0oC,(35)(28)15.5oC)内,其体积电阻率的增加速率约为1.3×105?cm K-1.在不同CF含量下,复合材料表现出不同的PTC行为.随着CF含量的增加,其峰值电阻略有下降.高导电粒子含量下,无负温度系数(NTC)效应.在冷却循环过程,导电网络的重构性良好.复合材料即使经过多次热循环,依然表现出良好的PTC特性重现性.  相似文献   

5.
The preparation and properties of poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported for the first time. PVDF/clay nanocomposites were prepared by melt intercalation with organophilic clay. The composites were characterized with X‐ray diffraction, differential scanning calorimetry, and dynamic mechanical analysis. X‐ray diffraction results indicated intercalation of the polymer into the interlayer spacing. PVDF in the nanocomposites crystallized in the β form. Differential scanning calorimetry nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity, as evidenced by the melting and crystallization peaks. Isothermal crystallization studies showed an enhanced rate of crystallization with the addition of clay, as evidenced by a reduction in the crystallization time. Dynamic mechanical analysis indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. The tan δ peak signifying the glass‐transition temperature of PVDF shifted to higher temperatures. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1682–1689, 2002  相似文献   

6.
The effect of high molecular weight resin and multi-walled carbon nanotubes (MWCNTs) on the crystallization, rheological and dynamic mechanical properties of poly (vinylidene fluoride) (PVDF) composites was investigated. A synergetic effect of the high molecular weight resin and MWCNTs on the nucleation in the crystallization process of the matrix has been observed, and their contributions to the crystallization of the matrix are two-sided. The composites containing both the high molecular weight resin and MWCNTs have much higher crystallization peak temperatures but lower crystallinity, especially for samples with high MWCNT content. For the isothermal crystallization at relative high temperatures, higher Avrami exponent and shorter half-time of crystallization are observed for the composites containing both the high molecular weight resin and MWCNTs. The introduction of the high molecular weight resin not only reinforces the matrix, but also promotes the dispersion of MWCNTs. The reinforcement and synergetic nucleation effects of the high molecular weight resin and MWCNTs were also confirmed by dynamic mechanical analysis.  相似文献   

7.
李晓萱  陈涛  伍胜利 《应用化学》2015,32(11):1319-1326
采用差示扫描量热法DSC研究了水性聚氨酯/功能化石墨烯(WPU/FGNs)纳米复合材料的非等温结晶行为,分别采用Ozawa方程、莫志深方程研究复合材料的非等温结晶动力学,并通过Kissinger方程计算了结晶过程中的活化能。 结果表明,石墨烯在复合材料的结晶过程中起到异相成核剂的作用,提高了复合材料的结晶起始温度、峰值温度和结晶速率;增加石墨烯的质量分数,复合材料的结晶维数增加;石墨烯增加至0.3%,复合材料的活化能从-47.74 kJ/mol降低至-53.60 kJ/mol,继续增加石墨烯至1.0%,复合材料的活化能增加至-41.74 kJ/mol。  相似文献   

8.
采用成盐、预聚合、固相聚合三步法制备高分子量的PA6T/66,用差示扫描量热法(DSC)研究了PA6T/66的非等温结晶动力学,结果表明:结晶温度随着降温速率的增大而降低;半结晶期T1/2随降温速率Ф的增大呈指数下降,表明结晶速率随降温速率的增大而提高;由用R-T法可以得到在不同结晶度下lgΦ对lgT有较好的线性关系。用Kissinger方法计算得到PA6T/66(55/45)非等温结晶活化能分别为ΔE=-61.51kJ/mol。  相似文献   

9.
Wood flour/polypropylene composites (WPC) were prepared by melt extruding with different wood flour (WF) loadings. The non-isothermal crystallization and melting was studied with different WF loadings, for W40P60 and W40P60M6, the melting was investigated after non-isothermal and isothermal crystalline. Comparing with neat polypropylene, the melting behavior of the composites, both non-isothermally and isothermally, was investigated by differential scanning calorimetry (DSC). The results showed that WF was an effective heterogeneous nucleating agent, as evidenced by an increase in the crystallization temperature and the crystallinity for melt crystallization of PP with increasing WF content. For the non-isothermal samples, the origins of the double melting behaviors were discussed, based on the DSC results of PP. The XRD measurements confirmed that no crystalline transition existed during the non-isothermal crystallization process. With m-TMI-g-PP adding, due to compatibilization phenomenon were probably responsible for decreasing T m, X c. In the DSC scan after isothermal crystallization process, the single melting behaviors were found and each melting endotherm had a different origin.  相似文献   

10.
采用DSC方法研究了PA13N在不同降温速率下的结晶过程,并利用Avrami方程研究了其非等温结晶动力学。在非等温结晶过程中,随着降温速率的增大,结晶温度向低温偏移。综合利用Avrami方程得到Avrami指数为1.35~1.88和结晶速率常数Zc≈1;并求得其结晶活化能为-58.42kJ/mol。结果表明,PA13N的结晶能力小于其他脂肪族尼龙。  相似文献   

11.
The preparation and characterization of melt‐intercalated poly(vinylidene fluoride) (PVDF)/clay nanocomposites are reported. Organophilic clay (clay treated with dimethyl dihydrogenated tallow quaternary ammonium chloride) was used for the nanocomposite preparation. The composites were characterized with X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). XRD results indicated the intercalation of the polymer in the interlayer spacing. The incorporation of clay in PVDF resulted in the β form of PVDF. DSC nonisothermal curves showed an increase in the melting and crystallization temperatures along with a decrease in crystallinity. Isothermal crystallization studies show an enhanced rate of crystallization with the addition of clay. DMA indicated significant improvements in the storage modulus over a temperature range of ?100 to 150 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 31–38, 2003  相似文献   

12.
To improve the dispersion of multi‐walled walled carbon nanotubes (MWCNTs) and investigate the effect of dispersant for MWCNTs functionalization on the dielectric, mechanical, and thermal properties of Polyvinylidene fluoride (PVDF) composites, two different dispersants (Chitosan and TritonX‐100) with different dispersion capability and dielectric properties were used to noncovalently functionalize MWCNTs and prepare PVDF composites via solution blending. Fourier transform infrared, X‐Ray diffraction, and Raman spectroscopy indicated that TritonX‐100 and Chitosan were noncovalent functionalized successfully on the surface of MWCNTs. With the functionalization of Chitosan and TritonX‐100, the dispersion of MWCNTs changed in different extent, which was investigated by dynamic light scattering and confocal laser scan microscopy. The dielectric, mechanical, and thermal properties of PVDF composites were also improved. Meanwhile, it was also found that the dielectric properties of PVDF composites are closely related to the dielectric properties of dispersant. High dielectric constant of dispersant contributes to the grant dielectric constant of PVDF composites. The mechanical and thermal properties of MWCNTs/PVDF composites largely depend on the dispersion of MWCNTs in PVDF, interfacial interactions and the residual solvent. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The non-isothermal crystallization behaviors of multi-walled carbon nanotubes (MWNTs)/polyamide 6 (PA6) composites were investigated by differential scanning calorimetry (DSC). Three methods, namely, Avrami, Ozawa and Mo, were carried out to analyze the non-isothermal crystallization data. The results showed that the MWNTs in PA6 acted as effective nucleation agents. However the crystallization rate of composites obtained was lower than that of the neat PA6. It is indicated that the presence of MWNTs influenced the mechanism of nucleation and the growth of PA6 crystallites.  相似文献   

14.
多壁碳纳米管对聚甲醛性能的影响   总被引:2,自引:1,他引:1  
将多壁碳纳米管(MWCNTs)和聚甲醛(POM)在转矩流变仪中熔融混合得到POM/MWCNT复合材料.研究了复合材料的形态,导热性能,导电性能,流变性能和结晶性能.结果表明,MWCNTs在没有经过处理的情况下能够均匀地分散在POM基体中;当向POM中添加1.0 wt%含量MWCNTs时,复合材料的导热系数上升到0.5289 W/(K m),比纯POM的导热系数0.198 W/(K m)提高1.5倍,通过有效介质方法(EMA)验证了体系导热系数提高幅度不大的原因是MWCNTs与POM之间形成了很高的界面热阻;当MWCNTs的含量为1.0 wt%时,体系产生了导电逾渗效应,逾渗值在0.5 wt%~1.0 wt%之间;MWCNTs对POM有显著的成核作用,当向POM中添加0.5 wt%含量的MWCNTs时,POM的结晶温度提高6℃左右,但当MWCNTs的添加量进一步增加时,结晶温度几乎不再变化,成核效果呈现"饱和"状态.另外,材料的复数黏度,储能模量和损耗模量随MWCNTs含量的增加而增加.  相似文献   

15.
Poly (lactic acid)/elastomer blends were prepared via direct injection molding. In non-isothermal crystallization scan, the crystallinity of PLA increased with a decrease in the heating and cooling rate. The melt crystallization of PLA appeared in the low cooling rate (1, 5 and 7.5°C/min). The presence of elastomer tended also to increase the crystallinity of PLA. However, it started to decrease in 30% of elastomer. It was also showed by the decreasing of cold crystallization activation energy. Elastomer also gave plasticization effect in PLA properties. Thermal treatment through annealing completed after 1 h at 80 °C. In isothermal crystallization scan, the cold crystallization rate increased with increasing crystallization temperature in the blends. The Avrami analysis showed that at low temperatures, the cold crystallization had two regime processes whereas at high temperature only one stage was observed.  相似文献   

16.
Isotactic polypropylenes (iPP) samples were incorporated with two β-nucleating agents (NT-A and NT-C), respectively, and their non-isothermal crystallization and subsequent melt behaviors were investigated by means of differential scanning calorimeter. Jeziorny, Ozawa, and Mo methods were used to analyze non-isothermal crystallization kinetics of pure iPP and β-nucleated iPP samples. The activation energies (ΔE) of non-isothermal crystallization were calculated by Kissinger method. And the nucleation activities were calculated according to the Dobreva method. It is found that the crystallization temperature decreases and the crystallization rate increases with increasing cooling rate. The crystallization temperature and crystallization rate of nucleated iPP are higher than those of pure iPP. The order of ΔE is NT-A/iPP > pure iPP > NT-C/iPP. NT-C is more efficient than NT-A as a β-nucleating agent. But the non-isothermal crystallization kinetics of α- and β-phases cannot be determined separately. The present results should be considered with caution.  相似文献   

17.
In this study, the polymer blends composed of polyvinylidene fluoride (PVDF) and polyamide 6 (PA6) were prepared via precipitation method, and then, the effects of PA6 on the crystallization behavior of PVDF, including the polymorphism and crystallization kinetice, were systematically investigated. For this aim, time-resolved Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimeter were utilized to study the influence of PA6 on crystallization behavior of PVDF. Furthermore, the morphologic images from scanning electron microscopy also supply the corresponding evidences. The results obtained shows that PA6 is immiscible with PVDF, while the PA6 component could form polar environment around the PVDF segment which is conducive to the formation of β phase of PVDF. In addition, calorimetric studies via DSC on the non-isothermal crystallization behavior and non-isothermal crystallization kinetics demonstrated conclusively that PA6 segments could effectively hinder the subsequent PVDF crystallization process because of the interfacial hydrogen bonds and incompatibility between PVDF and PA6.  相似文献   

18.
In this study, the effect of several inorganic fillers: silicon oxide (SiO2), nanoclay (C20A), alumina (Al2O3), and calcium carbonate (CaCO3) on the crystallization behavior of polypropylene were analyzed for composites with fixed filler content (5 mass%) prepared by intensive mixing following by compression molding. In addition, for calcium carbonate, which produces the highest increase on toughness, PP grafted with maleic anhydride (PP-g-MA) was added to enhance the compatibility. In that case, different content of particles was used (from 5 to 20 mass%) and the synergic effect of both incorporations was demonstrated. For this purpose, isothermal and non-isothermal crystallization tests were carried out in the bulk (by differential scanning calorimetry). In addition, the spherulitic growth was studied (by optical microscopy). Different models were used to predict the relative degree of crystallinity and several parameters were analyzed. All results indicate that whereas alumina and calcium carbonate acted as nucleating agents, silica and nanoclay displayed an opposite behavior. The full models that take into account the different parameters during cooling under isothermal and non-isothermal conditions were used to construct continuous cooling transformation and time temperature transformation diagrams. Both kind of diagrams provide a fundamental tool to understand the crystallization behavior of studied composites and are useful to determine the processing conditions.  相似文献   

19.
In this work, the influence of attapulgite concentration on the nucleating efficiency of isotactic polypropylene (iPP) and on the kinetics of non-isothermal crystallization were ascertained.The study was conducted by DSC. The nucleating efficiency was determined according to the procedure described by Fillon and the kinetics of non-isothermal crystallization was determined using Ozawa's method using cooling rates of 2, 5 and 10°C min−1.Our results indicate that both the relative crystallinity and the crystallization temperature increase with filler content and that a maximum occurs at 2% mass/mass filler content. Both parameters decrease with increasing cooling rates. The Ozawa's exponent tended to increase with temperature and filler content. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into PVDF caused the formation of β phase. A thermal annealing at 130 °C confirmed that the β phase was stable in the nanocomposites. Differential scanning calorimetry(DSC) results indicate that the melting temperature slightly increased while the heat of fusion markedly decreased with increasing MWCNT content. The tensile strength and modulus of PVDF were improved by loading the MWCNTs. The scanning electron microscopy(SEM) observations showed that MWCNTs were uniformly dispersed in the PVDF matrix and an interfacial adhesion between MWCNT and PVDF was achieved, which was responsible for the enhancement in the tensile strength and modulus of PVDF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号