首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic triblock copolymers of poly(3-hydroxybutyrate)-poly(ethylene glycol)-poly(3-hydroxybutyrate) (PHB-PEG-PHB) were directly synthesized by the ring-opening copolymerization of β-butyrolactone monomer using PEG as macroinitiator. Their structure, thermal properties and crystallization were investigated by 1H NMR, differential scanning calorimetry (DSC) and X-ray diffraction. It was found that both PHB and PEG blocks were miscible. With the increase in the PHB block length, the triblock copolymers became amorphous because amorphous PHB block remarkably depressed the crystallization of the PEG block. Biodegradable nanoparticles with core-shell structure were prepared in aqueous solution from the amphiphilic triblock copolymers, and characterized by 1H NMR, SEM and fluorescence. The hydrophobic PHB segments formed the central solid-like core, and stabilized by the hydrophilic PEG block. The nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, the PHB-PEG-PHB nanoparticles also showed good drug loading properties, which suggested that they were very suitable as delivery vehicles for hydrophobic drugs.  相似文献   

2.
A series of highly water-soluble organo-silica nanoparticles, ranging from 2 to 10 nm in diameter, were synthesized by the cohydrolysis and copolycondensation reactions. ω-methoxy(polyethyleneoxy)propyltrimethoxysilane (PEG6-9) and hydroxymethyltriethoxysilane (HMTEOS) mixtures were catalyzed by sodium hydroxide in the presence of surfactant benzethonium chloride (BTC) with various ratios of PEG6-9/HMTEOS at room temperature. The synthesized organo-silica nanoparticles possess a core–shell structure with a core of organo-silica resulting from HMTEOS and a monolayer shell of PEG6-9. The chemo-physical characteristics of the particles were studied by gel permeation chromatography (GPC), Fourier transform infrared (FTIR) spectroscopy, 29Si nuclear magnetic resonance (NMR), dynamic light scattering (DLS), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The molecular weight and particle size of the particles increased with increasing HMTEOS molar ratios. The richest HMTEOS composition for the water-soluble particles was found to be HMTEOS:PEG6-9 = 80:20, where the particles had a 6 nm diameter core and a 0.8 nm thick shell. We propose that these water-soluble organo-silica nanoparticles will be suitable for biomedical applications.  相似文献   

3.
Atom transfer radical emulsion polymerization of styrene using PEG‐Cl as macroinitiator under microwave irradiation was successfully conducted and monodispersed nanoparticles were prepared. The PEG‐Cl macroinitiator was synthesized, and confirmed by FTIR spectrum. The structure of the PEG‐b‐PSt diblock copolymer was characterized by 1H‐NMR and the number of styrene unit in the diblock copolymer was calculated. The morphology, size, and size distribution of the nanoparticles were characterized by transmission electron microscope (TEM) and photon correlation spectroscopy (PCS). The effects of the ratio of macroinitiator and monomer, the ratio of catalyst and macroinitiator on the size and size distribution of nanoparticles were investigated. It was found that the diameters of PEG‐b‐PSt nanoparticles prepared under microwave irradiation were smaller (<50 nm) and more monodispersed than those prepared with conventional heating. Moreover, with the increasing of the ratio of St/PEG‐Cl, the hydrodynamic diameters (Dh) of the nanoparticles increased and the poly index decreased, both Dh and poly index of the nanoparticles prepared under microwave irradiation were smaller then those prepared with conventional heating; as the concentration of catalyst increased, the Dh of the nanoparticles decreased and the poly index of the nanoparticles increased. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 481–488, 2008  相似文献   

4.
A Polysulfone-Polyethylene glycol (PS/PEG) flat sheet membrane was prepared by phase inversion technique. Dimethyl Formamide (DMF) was utilized as a solvent and deionized water was utilized as the coagulant. Polyethylene glycol (PEG) of a various dose of PEG 2000 was utilized as the polymeric improvers and as a pore-forming agent in the casting mixture. The single-walled carbon nanotube (SWCNTs), multi-walled carbon nanotube (MWCNTs), aluminum oxide (Al2O3) and copper oxide (CuO) nanoparticles (NPs) were utilized to improve the PS/PEG membrane performances. The characterizations of the neat PS, PS/PEG, PS/PEG/Al2O3 (M1) PS-PEG/CuO (M2), PS-PEG/SWCNTs (M3) and PS/PEG/MWCNTs (M14) nanocomposite (NC) modified membranes were acquired via Fourier-transform infrared analysis (FTIR), water contact angle estimation (WCA), scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analysis (TGA). Enhanced Direct contact membrane distillation (EDCMD) unit was used for estimating the efficiency of the performance of the synthesized NC membranes via 60 °C feed synthetic water and/or saline oil field produced water samples containing salinities 123,14 mg/L. Adjusting the operational procedures and water characteristics confirmed a high salt rejection of 99.99% by the synthesized NC membranes. The maximum permeate flux achieved in the order of SWCNTs (20.91) > Al2O3 (19.92) > CuO (18.92) > MWCNT (18.20) (L/m2.h) with adjusted concentration of 0.5, 0.75, 0.75, 0.1 wt% compared with PS weight, i.e. 16%. The optimum operational circumstances comprised feed and permeate temperatures 60 °C and 20 °C, respectively. The achieved flux was 5.97 L/m2.h, using brine oil field produced water, via PS/PEG/SWCNTs membrane with 0.5 wt% of SWCNTs. Moreover, the membrane indicated sustaining performance stability in the 480 min continuous desalination testing, showing that the synthesized PS/PEG/SWCNTs NC modified membrane may be of magnificent potential to be activated in EDCMD procedure for water desalination.  相似文献   

5.
A potential new photosensitizer based on a dissymmetric porphyrin derivative bearing a thiol group was synthesized. 5-[4-(11-Mercaptoundecyloxy)-phenyl-10,15,20-triphenylporphyrin (PR-SH) was used to functionalize gold nanoparticles in order to obtain a potential drug delivery system. Water-soluble multifunctional gold nanoparticles GNP-PR/PEG were prepared using the Brust–Schiffrin methodology, by immobilization of both a thiolated polyethylene glycol (PEG) and the porphyrin thiol compound (PR-SH). The nanoparticles were fully characterized by transmission electron microscopy and 1H nuclear magnetic resonance spectroscopy, UV/Vis absorption spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, the ability of GNP-PR/PEGs to induce singlet oxygen production was analyzed to demonstrate the activity of the photosensitizer. Cytotoxicity experiments showed the nanoparticles are nontoxic. Finally, cellular uptake experiments demonstrated that the functionalized gold nanoparticles are internalized. Therefore, this colloid can be considered to be a novel nanosystem that could potentially be suitable as an intracellular drug delivery system of photosensitizers for photodynamic therapy.  相似文献   

6.
Multifunctional, biocompatible, and brush‐grafted poly(ethylene glycol)/poly(ε‐caprolactone) (PEG/PCL) nanoparticles have been synthesized, characterized, and used as vehicles for transporting hydrophobic substances in water. For anchoring the polymer mixed brushes, we used magnetic‐silica particles of 40 nm diameter produced by the reverse microemulsion method. The surface of the silica particle was functionalized with biocompatible polymer brushes, which were synthesized by the combination of “grafting to” and “grafting from” techniques. PEG was immobilized on the particles surface, by “grafting to,” whereas PCL was growth by ROP using the “grafting from” approach. By varying the synthetic conditions, it was possible to control the amount of PCL anchored on the surface of the nanoparticles and consequently the PEG/PCL ratio, which is a vital parameter connected with the arrangement of the polymer brushes as well as the hydrophobic/hydrophilic balance of the particles. Thus, adjusting the PEG/PCL ratio, it was possible to obtain a system formed by PEG and PCL chains grafted on the particle's surface that collapsed in segregated domains depending on the solvent used. For instance, the nanoparticles are colloidally stable in water due to the PEG domains and at the same time are able to transport, entrapped within the PCL portion, highly water‐insoluble drugs. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2966–2975  相似文献   

7.
A new type of water soluble PEG core dendrimer having hydroxyl groups at the periphery was synthesized and used to prepare silver nanoparticles. The dendrimer and the dendrimer encapsulated nanoparticles (DENs) were characterized by spectroscopic techniques. The kinetics of catalytic activity of the prepared silver nanoparticle on the reduction of 4‐nitrophenol to 4‐aminophenol by NaBH4 as a reductant was studied using UV‐Visible spectrophotometer.  相似文献   

8.
Iron oxide nanoparticles as contrast agents are reported to effectively improve magnetic resonance imaging of tissues and cells. In this work, cleaved iron oxide nanoparticles (CIONPs) were generated from hydrophobic FeO nanoparticles (HIONPs) by coating their surfaces with PEG‐phospholipids, oxidizing them under water, and slowly removing the residual FeO phase in phthalate buffer. The synthesized CIONPs showed good r2 values of up to 258 s?1 mM ?1. Thus, the CIONPs can be employed as vectors for drug delivery due to their unique structure with an empty inner space, which enables their use in a wide range of applications.  相似文献   

9.
Qian  Z. Y.  Li  S.  He  Y.  Zhang  H. L.  Liu  X. B. 《Colloid and polymer science》2003,282(2):133-140
In this work, new aliphatic polyetheresteramide copolymers based on e-caprolactone, 11-aminoundecanoic acid, and poly(ethylene glycol) (PEG) were synthesized by the melt polycondensation method. The copolymers obtained were characterized by 1H NMR, differential scanning calorimetry, thermogravimetric analysis/differential thermogravimetry, and wide-angle X-ray diffraction. Water absorption and hydrolytic degradation behavior was also studied. With the increase in PEG content, water absorption and the hydrolytic degradation rate increased accordingly.  相似文献   

10.
The synthesis, optical, and electrochemical properties of semi-conducting co-oligomers of biphenyl/oligothiophenes and homo-oligophenylenes derived from a precursor 4-bromo-4-(n-butyl)-2,2-biphenyl, which was synthesized by a direct alkylation from 4,4-dibromo-2,2-biphenyl using n-butyl lithium, are reported.  相似文献   

11.
Hollow crosslinked polymers (HCPs) were synthesized using arm first method via atom transfer radical polymerization. The polymerization process was performed in miniemulsion system, in which the macroinitiator, PEG‐Br, was in the water phase, whereas the vinyl‐monomer, 4‐vinylpyridine (4VP), and the crosslinker, DVB, were in the butanone phase. TEM images and light scattering characterization showed that the resultant polymer contained a hollow space, and the volume of the hollow space could be adjusted by changing the ratio of water to butanone. Also, hollow crosslinked Miktoarm polymers (HCMPs) were synthesized through this method when two different macroinitiators, PEG‐Br and PNIPAM‐Br, were used to coinitiate the polymerization of the vinyl‐monomer, 4VP and DVB. The 1H NMR spectra showed that the hollow polymers contained both PEG arms and PNIPAM arms. The hollow morphologies of the resultant Miktoarm polymers were the same as the HCPs. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1651–1660, 2009  相似文献   

12.
A poly(ethylene glycol)‐b‐poly(L ‐lysine) diblock copolymer (PEG‐b‐PLL) was synthesized. Micellization of this hydrophilic copolymer due to the block‐specific threading of α‐cyclodextrin (α‐CD) molecules onto the polyethylene glycol (PEG) block yielded supramolecular‐structured nanoparticles, which undergoes pH‐inducible gelation in aqueous media. The pH‐inducible gelation of supramolecular micelle in water appeared to be completely reversible upon pH changes. The synergetic effect of selective complexation between PEG block and α‐CD and the pH‐inducible hydrophobic interaction between PLL blocks at pH 10 was believed to be the driving force for the formation of the supramolecular hydrogel. 1H NMR and wide angle X‐ray diffraction (WAXD) were employed to confirm the inclusion complexation between α‐CD and PEG block. Meanwhile, the morphology of the micellized nanoparticles was investigated by transmission electron microscopy (TEM). The thermal stability of inclusion complexes (ICs) was investigated and the rheologic experiment was conducted to reveal the micelle‐gel transition. Such pH‐induced reversible micelle‐gel transition of the supramolecular aggregates may find applications in several fields, for example as advanced biomedical material possessing stimulus‐responsiveness. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 782–790, 2008  相似文献   

13.
ABSTRACT: BACKGROUND: This study aims to investigate the influence of different stirring times on antibacterial activity of silver nanoparticles in polyethylene glycol (PEG) suspension. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using green agents, polyethylene glycol (PEG) under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken as the metal precursor while PEG was used as the solid support and polymeric stabilizer. The antibacterial activity of different sizes of nanosilver was investigated against Gram-positive [Staphylococcus aureus] and Gram-negative bacteria [Salmonella typhimurium SL1344] by the disk diffusion method using Mueller-Hinton Agar. RESULTS: Formation of Ag-NPs was determined by UV-vis spectroscopy where surface plasmon absorption maxima can be observed at 412-437 nm from the UV-vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD). The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM) revealed that Ag-NPs synthesized were in spherical shape. The optimum stirring time to synthesize smallest particle size was 6 hours with mean diameter of 11.23 nm. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 6 h stirring time of reaction. The Fourier transform infrared (FT-IR) spectrum suggested the complexation present between PEG and Ag-NPs. The Ag-NPs in PEG were effective against all bacteria tested. Higher antibacterial activity was observed for Ag-NPs with smaller size. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field. CONCLUSIONS: Ag-NPs were successfully synthesized in PEG suspension under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs with different stirring times exhibit inhibition towards the tested gram-positive and gram-negative bacteria.  相似文献   

14.
This article describes the preparation of poly(ethylene glycol) (PEG) ‐based gels for removal of both organic solvents and water through a clean synthesis process without using any initiator, catalyst, activator, or liquid medium. The synthesis of the gels is based on the condensation of different molecular weights of PEG macromolecules with the nine‐functional crosslinker tris[3‐(trimethoxysilyl) propyl] isocyanurate (ICS). Solid‐state 13C and 29Si cross‐polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), and elemental analysis were used to characterize the prepared sorbents. Thermal properties of the synthesized sorbents were examined using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The swelling capacities of the sorbents were determined by swelling tests in dichloromethane (DCM), tetrahydrofuran (THF), benzene, acetone, and toluene. The water absorbency of the PEG‐based sorbents is also investigated. The effect of the reaction time and reaction temperature on swelling features of the sorbents was studied systematically. The prepared PEG gels have high swelling ratios both in polar and nonpolar solvents. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A series of hexylamine modified polysuccinimide (PSI–HA) copolymers were synthesized by aminolysis of polysuccinimide (PSI) with hexylamine. FTIR and 1H NMR measurements confirmed the structure of the copolymers and the substitution degree of the N-hexyl aspartamide units ranged from 7 to 92 mol%. Stable nanoparticles formed when the DMF solution of PSI–HA copolymers was dropped into excess water, and the particle size reduced as increasing the substitution degree. 1H NMR analysis indicated that hexyl chain and succinimide units interacted to form the hydrophobic core, while, the nanoparticles were stabilized by the amide groups which formed hydrogen bonds with the surrounding water molecules. The nanoparticles became more compact at higher temperature due to the break of hydrogen bonds between amide groups and water molecules. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) results showed that the nanoparticles were nearly spherical. Larger nanoparticles formed when the dispersion concentration increased from 0.1% to 1.0% according to the DLS and steady-state fluorescence measurements. After the nanoparticles formed in water, a sequential dilution can't influence the particles size of the nanoparticles any longer.  相似文献   

16.
Carbon-encapsulated Ag and Cu nanoparticles were synthesized using pulsed-wire evaporation (PWE). All as-made materials were composed of nanocapsules with a uniform particle size at and below 50 nm. The nanocapsules consisted of an outer carbon layer shaped multi-shell. The dispersion stability of the solvent depends on the measured zeta potential for the particles in water, ethanol, ethylene glycol (EG), and polyethylene glycol (PEG). In the case of Ag@C, a stable dispersion was observed in the PEG suspension only. The stable dispersions of Cu@C were observed in EG and PEG without showing any clarification or sedimentation. Flocculation by a coalescing reaction between the nanoparticles was insignificant due to carbon layers on the surfaces of the metal (Ag and Cu) particles.  相似文献   

17.
The electrochemical behavior of α-Keggin-type nanoparticles, Co(en)3(PMo12O40) (abbreviated as PMo12-Co), have been studied in poly(ethylene glycol) for four different molecular weights (PEG, average MW 400, 600, 1000, and 2000 g mol–1) and containing LiClO4 (O/Li=100/1) supporting electrolyte. The diffusion coefficients of the PMo12-Co nanoparticles were determined using a microelectrode by chronoamperometry for PEG of different molecular weights that were used to describe the diffusion behavior of PMo12-Co nanoparticles in different phase states. Moreover, the conductivity of the composite system increases upon addition of PMo12-Co nanoparticles, which was measured by an a.c. impedance technique. FT-IR spectra and DSC were used to follow the interactions of PEG-LiClO4-PMo12-Co, and well described the reason that the PMo12-Co nanoparticles could promote the conductivity of the PEG-LiClO4-PMo12-Co system. Electronic Publication  相似文献   

18.
Polymeric micelles with a polystyrene core, poly(acrylic acid)/poly(4-vinyl pyridine) (PAA/P4VP) complex shell and poly(ethylene glycol) & poly(N-isopropylacrylamide) (PEG & PNIPAM) mixed corona were synthesized and used as the supporter for the gold nanoparticles (GNs). It was concluded from the result of 1H NMR characterization that hydrophilic channels formed around PEG chains when PNIPAM collapsed above its lower critical solution temperature. The density of the channels in the corona can be tuned by changing the weight ratios of PEG chains to PNIPAM chains. The GNs were set in the PAA/P4VP complex layer and the catalytic activity of the GNs can be modulated by the channels. The catalytic activity increased with increasing the density of the channels in the corona. Meanwhile, the whole Au/micelle nanoparticles were stabilized by the extended PEG chains.  相似文献   

19.
The carbapalladacycle complex of 4-hydroxyacetophenone oxime is a highly active palladium catalyst to effect the Suzuki coupling of aryl chlorides and other C-C forming reactions in water. In an attempt to develop a reusable, homogeneous system based on this complex, its stability against prolonged heating in different ionic liquids and polyethylenglycol (PEG) has been studied. It was found that the palladium complex decomposes in water, 1-butyl-1-methylimidazolium hexafluorophosphate and 1-butyl-1-methylimidazolium chloride to form palladium nanoparticles in the first two cases and PdCl42− in the third case. In contrast, this cyclic palladium complex was stable upon extended heating in 1-butyl-2,3-dimethylimidazolium hexafluorophosphate and in PEG. The activity of this complex for the Suzuki and Sonogashira correlates with the stability of the complex, the activity in PEG being higher than any of the ionic liquids tested. Although the carbapalladacycle complex also decomposes in PEG upon reaction, the resulting Pd nanoparticles (2-5 nm size) are stabilized by PEG acting as ligand. In this way, a reusable, homogeneous system in PEG has been developed that is able to effect the Suzuki and Sonogashira couplings without the need of copper and phosphorous ligands, working at the open air.  相似文献   

20.
ZnS纳米粒子的固相合成及其光学性能   总被引:1,自引:0,他引:1  
将不同的添加剂引入到低温固相反应中,快速合成了不同尺寸的ZnS纳米粒子。利用TEM表征了产物形貌,利用XRD研究了不同的添加剂、同一添加剂下不同的反应温度、不同反应时间对纳米粒子尺寸的影响。结果表明,不同的添加剂对粒子的尺寸影响较大,其中,十二烷基胺以其特殊的反应方式在较高温度下获得了较小的纳米粒子。另外,在PEG400存在条件下,反应温度和反应时间对粒子尺寸均有一定的影响。同时,对不同条件下所得产物的紫外-可见光吸收性能也进行了测试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号