首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, the formation of a luminescent hexanuclear cluster has been used for the selective determination of copper. In aqueous solutions, the non-luminescent ligand N-ethyl-N′-methylsulfonylthiourea (EMT) forms an intensely red luminescent hexanuclear Cu(I)-cluster with an emission maximum at 663 nm only with Cu(II) ions. The intensity of the luminescence is proportional to the Cu(II) concentration and allows for selective Cu determinations in the μg l−1-range. Ubiquitous metal ions such as Fe(III), Al(III), Ca(II), Mg(II), and alkaline metal ions, as well as other heavy metal ions, e.g. Co(II), Ni(II), Zn(II), Cd(II), Hg(II), and Pb(II) are tolerated in concentrations up to 50 mg l−1. The detection limit for Cu(II) in aqueous solution, calculated according to Funk et al. [Qualitätssicherung in der Analytischen Chemie, Verlag Chemie, Weinheim, 1992], is 113 μg l−1. The cluster formation has been used for the quantitative analysis of copper in tap water and in industrial water, as well as for the localization of copper adsorbed by activated-sludge flocs.  相似文献   

2.
Alireza Mohadesi 《Talanta》2007,72(1):95-100
An electrochemical sensor for the detection of copper(II) ions is described using a meso-2,3-dimercaptosuccinic acid (DMSA) self-assembled gold electrode. First in ammonia buffer pH 8, copper(II) ions complex with self-assembled monolayer (SAM) via the free carboxyl groups on immobilized meso-2,3-dimercaptosuccinic acid (accumulation step). Then, the medium is exchanged to acetate buffer pH 4.6 and the complexed Cu(II) ions are reduced in negative potential of −0.3 V (reduction step). Following this, reduced coppers are oxidized and detected by differential pulse (DP) voltammetric scans from −0.3 to +0.7 V (stripping step). The effective parameters in sensor response were examined. The detection limit of copper(II) was 1.29 μg L−1 and R.S.D. for 200 μg L−1 was 1.06%. The calibration curve was linear for 3-225 μg L−1 copper(II). The procedure was applied for determination of Cu(II) to natural waters and human hairs. The accuracy and precision of results were comparable to those obtained by flame atomic absorption spectroscopy (FAAS).  相似文献   

3.
Ion-imprinted polymer (IIP) particles are prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as crosslinking agent and 2,2′-azo-bis-isobutyronitrile as initiator in the presence of Cu(II), a Cu(II)-4-(2-pyridylazo)resorcinol (Cu(II)-PAR) complex, and PAR only. A batch procedure is used for the determination of the characteristics of the Cu(II) solid phase extraction from the IIP produced. The results obtained show that the Cu(II)-PAR IIP has the greatest adsorption capacity (37.4 μmol g−1 of dry copolymer) among the IIPs investigated. The optimal pH value for the quantitative preconcentration is 7, and full desorption is achieved by 1 M HNO3. The selectivity coefficients (SCu/Me) for Me = Ni(II), Co(II) are 45.0 and 38.5, respectively. It is established that Cu(II)-PAR IIPs can be used repeatedly without a considerable adsorption capacity loss. The determination of Cu(II) ions in seawater shows that the interfering matrix does not influence the preconcentration and selectivity values of the Cu(II)-PAR IIPs. The detection and quantification limits are 0.001 μmol L−1 (3σ) and 0.003 μmol L−1 (6σ), respectively.  相似文献   

4.
Summary A capillary electrophoretic method for the determination of Cu(II) and Co(III) chelates with ethylenediamine in electroless copper plating baths has been developed. The influence of carrier electrolyte parameters such as nature of counter-ion and pH were studied and discussed. The optimised separations were carried out in a fused silica capillary (57 cm × 75 μm I.D.) filled with an ethylenediamine sulfate electrolyte (20 mol L−1 ethylendiamine, pH7.0 with H2SO4; applied voltage, +25 kV) using direct UV detection at 214 nm. The detection limits for a signalto-noise ratio of 3 and 10s hydrodynamic injection were 5×10−6 mol L−1 for Cu(II) and 1×10−6 mol L−1 for Co(III). The relative standard deviations of the peak areas for Cu(II) and Co(III) were found to be 1.5% and 2.4%, respectively, with five consecutive injections of standard solution containing 5×10−5 mol L−1 of each metal ion. Application of the method to the speciation of Cu(II) and Co(III) complexes in copper plating bath samples is also demonstrated.  相似文献   

5.
《Analytical letters》2012,45(19):2183-2196
Abstract

A polarographic procedure was developed which permits the analysis of powdered cupric and cuprous oxides in the presence of metallic copper. To determine CuO, Cu2O and metallic copper content in the sample two weight aliquots were used. The first aliquot was dissolved in medium of 50 % ethanol + 3 M hydrochloric acid + saturated ascorbic acid solution. Insoluable metallic copper was determined polarographically after its' separation and additional dissolving in concentrated nitric acid.

The second sample aliquot was dissolved in 6 M hydrochloric acid and the ratio of Cu(I) / Cu(II) in the solution was determined from the polarographic curves. To calculate CuO, Cu2O and Cu content in a sample the proposed procedure was applied. The developed method provides the accurate results of the determination of CuO, Cu2O and Cu content in a powdered mixture. The reproducibility expressed as the relative standard deviation is from 1 % to 5 %.  相似文献   

6.
The system Cu(II)Cu(I)Cu(0) in acidified thiocyanate medium was investigated at carbon, mercury, and copper amalgam electrodes using cyclic voltammetry, normal, differential and reverse pulse voltammetry, double potential step chronocoulometry, and exhaustive coulometry. Reduction of Cu(II) to Cu(I) on carbon electrodes proceeds quasireversibly. At moderate concentrations of Cu(II) and SCN? the reduction of Cu(II) leads to three-dimensional precipitation of CuSCN which can be deposited at the electrode surface. At high concentration of SCN? complexation dominates over precipitation and only soluble species are formed. At mercury and copper amalgam electrodes the situation is more complicated. The three- dimensional precipitation is preceded by strong thiocyanate-induced adsorption of Cu(I) which results in formation of a mono layer at potential well-separated from those where diffusing product is formed.  相似文献   

7.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

8.
The synthesis of a novel donor–acceptor system comprising a ruthenium polypyridyl unit covalently linked to the secondary face of β-cyclodextrin which has a hydrxy bridged dinuclear copper(II) moiety on its primary face is described and the spectroscopic, electrochemical and photophysical properties of this complex are outlined. Photophysical studies demonstrate evidence for photoinduced electron transfer from the excited ruthenium to the copper centre. The rate of electron transfer, was estimated from luminescence lifetime studies to be 1.86 × 10−6 s−1. The parent ruthenium polypyridyl functionalized β-cyclodextrin complex binds to both Cu(II) and Zn(II) in alkaline aqueous solution and the affects of these cations on the luminescence intensity of this complex is explored and compared with the photophysics of the isolated supramolecular complex. Whereas Cu(II) statically quenches the ruthenium centre, Zn(II) has little effect. This work suggests luminescent CD complexes, with long-lived luminophores may have value in metal ion sensing.  相似文献   

9.
《Electroanalysis》2018,30(3):479-485
Bicinchoninic acid (BCA) is widely used for determining the valence state of copper in biological systems and quantification of the total protein concentration (BCA assay). Despite its well‐known high selectivity of Cu(I) over Cu(II), the exact formation constants for Cu(I)(BCA)23− and Cu(II)(BCA)22− complexes remain uncertain. These uncertainties, affect the correct interpretations of the roles of copper in biological processes and the BCA assay data. By studying the voltammetric behaviors of Cu(I)(BCA)23− and Cu(II)(BCA)22−, we demonstrate that the apparent lack of redox reaction reversibility is caused by an adsorption wave of Cu(II)(BCA)22−. With the adsorption wave identified, we found that the Cu(I)/Cu(II) selectivity of BCA is essentially identical to another popular ligand, bathocuproinedisulfonic acid (BCS). Density functional theory calculation on the geometries of Cu(I)(BCA)23− and Cu(II)(BCA)22− rationalizes the preferential Cu(I) binding by BCA and the strong adsorption of the Cu(II)(BCA)22− complex at the glassy carbon electrode. Based on the shift in the standard reduction potential of free Cu(II)/Cu(I) upon binding to BCA, we affirm that the formation constants for Cu(I)(BCA)23− and Cu(II)(BCA)22− are 1017.2 and 108.9, respectively. Therefore, BCA can be chosen among various ligands for effective and reliable studies of the copper binding affinities of different biomolecules.  相似文献   

10.
A method for the rapid separation of copper(II) traces on metallic mercury is proposed. The separation is rendered possible by the reduction of Cu(II) to Cu(I) on mercury in the presence of iodide ions followed by the adsorption of the uncharged complex, Cu(I), on Hg0. After a minute of agitation, this adsorption is quantitative (90–100%) for initial concentrations of Cu(II) between 10?4 to 10?6 M and iodide cone, of 10?2 to 10?3 M at pH 3. The volumes of the aqueous solutions are of the order of 3–10 ml and those of the drops of mercury between 0.5–1 ml. The tests were made using the isotope 64Cu (T 1/2 = 12.8 h).  相似文献   

11.
A new method is developed for the catalytic oxidation of ascorbic acid at graphite zeolite-modified electrode, doped with copper(II) (Cu2+A/ZCME). Copper(II) exchanged in zeolite type A acts as catalyst to oxidize ascorbic acid. The modified electrode lowered the overpotential of the reaction by ∼400 mV. First, the electrochemical behavior of copper(II), incorporated in the zeolite type A modified electrode, was studied. The results illustrate that diffusion can control the copper(II)/copper(0) redox process at the Cu2+A/ZCME. Then, the behavior of electrocatalytic oxidation reaction for ascorbic acid was researched. The electrode was employed to study electrocatalytic oxidation of ascorbic acid, using cyclic voltammetry and chronoamperometry as diagnostic techniques. The diffusion coefficient of ascorbic acid was equal to 1.028 × 10−5 cm2 s−1. A linear calibration graph was obtained over the ascorbic acid with a concentration range of 0.003-6.00 mmol L−1. The detection limit (DL) of ascorbic acid was estimated as 2.76 × 10−7 mol L−1. The relative standard deviations of 10 replicate measurements (performed on a single electrode at several ascorbic acid concentrations between 3.0 and 200 μmol L−1) were measured between 1.0 and 2.4%.  相似文献   

12.
The paper reports preparation and analytical features of a new Cu(II)-imprinted polymer, based on salen-OMe ligand 2,2′-[ethane-1,2-diylbis(nitrilo(E)methylylidene)]bis(6-allyl-4-methoxyphenol) and styrene-divinylbenzene matrix, as well as its application to on-line preconcentration and flame atomic absorption determination of copper. Sorbent beads (average diameter of 60-80 µm) were obtained using suspension polymerization technique and employed as a column filling. Copper sorption was the most effective at pH 6.8, whereas the highest elution effectiveness was observed when 0.5% HNO3 was applied. The sorbent exhibited good long-term stability and acid resistance. Enrichment factor (EF) of 12 was found for 60 s loading time and loading flow rate of 4 mL min− 1. EF value may be further increased by expanding the loading time and/or flow rate. Batch sorbent capacity in optimal pH conditions was found to be 0.16 mmol g− 1 (9.55 mg g− 1) of a dry polymer. Calcium(II) turned out to be the only significant interferent. Cadmium(II), silver(I), nickel(II), zinc(II) in concentrations lower than about 1 mg L− 1 did not disturb copper(II) preconcentration. Different calibration methods such as: set of standards method (SSM), standard addition method (SAM) and combinatory calibration method (CCM) were employed for copper(II) determination in tap water, spring mineral water and certified reference material. Analysis of EU-H-3 reference material confirmed good accuracy of the proposed method. Relative standard deviation (RSD) was 3.2 for standard addition method and 2.8% for set of standard calibration method. Detection limit for sample consumption 16 mL was 1.03 and 1.07 µgL-1 respectively.  相似文献   

13.
An in-situ antimony film screen-printed carbon electrode (in-situ SbSPCE) was successfully used for the determination of Cu(II) simultaneously with Cd(II) and Pb(II) ions, by means of differential pulse anodic stripping voltammetry (DPASV), in a certified reference groundwater sample with a very high reproducibility and good trueness. This electrode is proposed as a valuable alternative to in-situ bismuth film electrodes, since no competition between the electrodeposited copper and antimony for surface sites was noticed. In-situ SbSPCE was microscopically characterized and experimental parameters such as deposition potential, accumulation time and pH were optimized. The best voltammetric response for the simultaneous determination of Cd(II), Pb(II) and Cu(II) ions was achieved when deposition potential was −1.2 V, accumulation time 120 s and pH 4.5. The detection and quantification limits at levels of μg L−1 suggest that the in-situ SbSPCE could be fully suitable for the determination of Cd(II), Pb(II) and Cu(II) ions in natural samples.  相似文献   

14.
A new reagent, 1,3-bis(2-benzothiazolyl-diazoamino)benzene (BBTAB), was first synthesized and characterized by elemental analysis, 1H NMR and IR spectra. The inclusion complex of BBTAB with β-cyclodextrin (β-CD) was formed. BBTAB in the inclusion complex or alone reacts with copper(II) to form chelate complex in a slight basic medium, which results in drastic or slight fluorescence enhancement, respectively. The spectrofluorimetric method of trace amount of copper(II) based on the enhancement of inclusion complex by binding with copper(II) was established. The excitation and emission wavelengths of the BBTAB/β-CD/Cu system are 389 and 480 nm, respectively. Under optimal conditions, a linear response of BBTAB/β-CD to copper(II) is obtained in the range of 3.0 × 10−7 to 1.0 × 10−5 mol L−1, and the detection limit is determined to be 1.2 × 10−8 mol L−1. The method is selective, sensitive and simple, and has been used for the determination of trace copper(II) in water samples with satisfactory results. The possible response mechanism of BBTAB/β-CD or BBTAB to copper(II) and the role of β-CD in the drastic enhancement of fluorescence of BBTAB/β-CD/Cu system have been discussed.  相似文献   

15.
Asan A  Isildak I  Andac M  Yilmaz F 《Talanta》2003,60(4):861-866
A new simple, and rapid flow-injection spectrophotometric method is developed for the determination of trace amounts of Cu(II) by using a new chromogenic reagent acetylsalicylhydroxamic acid (AcSHA). The method is based on the formation of colored Cu(II)-(AcSHA)2 complex. The optimum conditions for the chromogenic reaction of Cu(II) with AcSHA is studied and the colored (green) complex is selectively monitored at λmax 700 nm. With the reagent carrier solvent (dimethylsulfoxide (DMSO) and acetate buffer, pH 4.2) flow-rate of 1 ml min−1, a detection limit (2S) of 1 μg l−1 Cu(II) was obtained at a sampling rate of 80 sample h−1. The calibration graph was linear in the Cu(II) concentration range 5-120 μg l−1. The relative standard deviation (n=10) was 0.64% for a sample containing 60 μg l−1 Cu(II). The detailed study of various interferences confirmed the high selectivity of the developed method. The method was successfully applied to determine trace amounts of copper(II) in river and seawater samples. The accuracy of the method was demonstrated by the analysis of standard reference materials C12X3500 and C14XHS 50.  相似文献   

16.
Some copper(I) complexes of the formula [Cu(L)(PPh3)2]X (1-4) [where L = 2-phenyl-3-(benzylamino)-1,2-dihydroquinazolin-4(3H)-one; PPh3 = triphenylphosphine; X = Cl, NO3, ClO4 and BF4] have been prepared and characterized on the basis of elemental analysis, IR, UV-Vis and 1H NMR spectral studies. The representative complex of the series 4 has been characterized by single crystal X-ray diffraction which reveal that in the complex the central copper(I) ion assumes the irregular distorted-tetrahedral geometry. Cyclic voltammetry of the complexes indicate a quasireversible redox behavior corresponding to Cu(II)/Cu(I) couple. All the complexes exhibit intraligand (π → π) fluorescence with high quantum yield in dichloromethane solution.  相似文献   

17.
Wittaya Ngeontae 《Talanta》2009,78(3):1004-630
Chemically modified silica containing amidoamidoxime group was studied as a sorbent for solid-phase extraction (SPE) and preconcentration of Cu(II) prior to determination by flame atomic absorption spectrometry (FAAS). The sorbent showed an extremely high selectivity towards Cu(II) in the pH range of 4-6, while the extraction of Pb(II), Cd(II), Ni(II) and Co(II) was low. The adsorption isotherm followed the Langmuir model and the maximum sorption capacity of 0.0163 mmol Cu(II) g−1 was achieved. In the flow system, Cu(II) was completely retained on a column containing 40 mg of the modified silica at the flow rate of 4.0 mL min−1 and quantitatively eluted by 5 mL of 1% (v/v) HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg L−1 was observed. When applied for preconcentration and determination of Cu(II) in tap water, pond water, and seawater, the recoveries were 96, 101, and 95%, respectively, with high precision (% relative standard deviation (R.S.D.) < 4) and low method detection limit (9 μg L−1).  相似文献   

18.
One reaction system of Cu2+, dipn, and CN with two different molar ratio sets of 1:1:5, and 2:1:8 produced two compounds 1 [CuII(dipn)][CuII(CN)4], and 2, respectively (dipn = dipropylenetriamine). Their structures were determined by X-ray crystallography. Compound 2 is built from Cu(I) and Cu(II) centers, which are bridged by cyanide groups and metal-metal bonds. The magnetic properties of 1 and 2 were investigated in 2-300 K. Compound 1 exhibits an antiferromagnetic exchange interaction between copper(II) ions mediated by cyano-bridges.  相似文献   

19.
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L−1 Zn(II), 5-200 μg L−1 Cd(II), 10-200 μg L−1 Pb(II), 20-400 μg L−1 Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L−1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L−1 Zn(II), 13 μg L−1 Cd(II), 13 μg L−1 Pb(II) and 27 μg L−1 Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area.  相似文献   

20.
Coumarin derivative 1 was synthesized as an efficient ratiometric chemodosimeter for the detection of Cu(II) in 99% water/DMSO (v/v) at pH 7.0. Mechanism studies suggested that 1 formed a complex with Cu(II) at 2:1 ratio accompanied by quenching of green fluorescence at 524 nm; when the solution was heated to 50 °C for 30 min, Cu(II)-promoted hydrolysis of coumarin lactone moiety of 1 occurred with bright blue fluorescence at 451 nm emerged. With fluorescence intensity ratio detection at 451 nm and 524 nm, 1 features an excellent sensitivity with the detection limit of 15 nmol L−1 toward Cu(II) and a good selectivity over other metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号