首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We perform the experiments to investigate in-situ phase fraction in a jet pump using the electrical resistance tomography (ERT) technique. A new jet pump with ERT sensors is designed to measure in-situ phase fraction and flow regime. The study is based on laboratory experiments that are carried out on a 50-mm vertical flow rig for various gas and liquid phase superficial velocities. The different flow patterns of gas liquid in the jet pump and vertical pipe are studied using the ERT technique. The results suggest that the ERT system can be used to successfully produce images of gas-liquid flow patterns with frames rates of 58 fps and the in-situ phase fraction with frame rates of 5 fps can be obtained. The visualizations of a rapid mixing process in the throat of a jet pump obtained in this work provide a reliable basis for theoretical study and optimal design of jet pumps.  相似文献   

2.
C. Prabkeao  K. Aoki 《显形杂志》2005,8(4):347-355
The present paper describes a numerical prediction of optimum mixing throat length for various drive nozzle positions of the central jet pump. The flow pattern and pressure distribution in the pump for various positions of the drive nozzle are investigated by three-dimensional numerical analysis using the RNG k-ε turbulent flow model. Numerical analysis was carried out for values of the nozzle throat ratiod/D of the jet pump of 0.5, 0.6 and 0.7, respectively. The static pressure in the flow field of the jet pump is calculated for the following conditions: (1) drive nozzle position from the entrance of the throatl /D=0 ∼ 2.0, (2) flow rate ratioM=0∼ 1.2, and (3) Reynolds numberRe=3.6×105. These calculations revealed that (1) the optimum length of the mixing throat forl/D=0∼ 1.0 isLm/D=2.0 ∼ 3.5, (2) the length of the mixing throat forl/D=0 andM=0 (suction flow rate ratio=0) is approximatelyLm/D=3.5, and (3) the maximum efficiency is obtained ford/D=0.6 atl/D=0.5. Moreover, the flow pattern in the mixing throat is clarified through a spark tracing experiment. The results obtained in the visualization experiment and the numerically obtained mixing length agreed well.  相似文献   

3.
在Re=5×106的条件下,分别在S809翼型前缘点附近不同位置处设置离体射流装置,改变射流动量的大小和射流口宽度,探究其对S809翼型气动性能的影响.并通过流场分析,研究这种流动控制手段有效的物理机理.结果表明:在射流装置位置和射流口宽度固定时,射流动量的大小对控制效果影响显著;在S809翼型表面附近设置微小离体射流...  相似文献   

4.
基于程序可靠性校验,本文对绕凸包流动进行了数值研究,其中主要对不同吹/吸气速度影响进行了参数化研究,并根据结果对吹/吸气控制分离机理予以了解释,表明:吹吸气对附面层的吹断/吸除作用以及其对主流的气动堵塞作用是正确分析其影响分离机理的关键。  相似文献   

5.
受限混合层的流动主要是喷流与自由来流相互剪切形成的混合层受到壁面的限制而形成的一种流动.文章采用后向台阶平板模型研究了高速高压比条件下的受限混合层的典型流场结构以及冷却效率.实验自由来流Mach数为5, 喷流的Mach数为1.28, 喷流总压为0.2~0.7 MPa, 通过调整冷喷气流的总压, 基于纹影流动显.形成喷口附近波系的欠膨胀流动现象的深刻认识, 提取波系特征与流动参数之间的规律.基于流动显示及实验测量结果, 通过分析流场中大尺度结构的空间演化规律, 揭示流动参数对于冷却效率的影响规律及物理内涵.采用快响应压敏漆(FRPSP)技术在高超声速风洞开展热流分布和冷却效率研究, 获得了平板对受限混合层冷却效率的影响.   相似文献   

6.
高压热气流与整装式液体工质相互作用的实验研究   总被引:5,自引:0,他引:5  
为了探索整装式液体发射药燃烧稳定性的控制方法,本文设计了多级渐扩型圆柱观察室,采用高速录像系统,开展了含能气体射流在液体模拟工质中扩展形态的实验研究.实验结果表明,渐扩型结构尺寸、喷气压力、喷孔直径对泰勒空腔的扩展形态以及气液间的湍流掺混强度有显著影响,通过这些参数的合理匹配,可以在一定程度上实现对射流发展过程的控制.  相似文献   

7.
CFD在双吸式离心泵优化设计中的应用   总被引:3,自引:0,他引:3  
针对某双吸式离心泵流量和扬程达不到设计要求,效率偏低的情况,对该泵内部三维湍流进行了数值模拟,通过对泵内流场和总压变化过程的分析,找出了该泵达不到设计要求的原因,提出了切割叶轮进口以扩大进口面积的改进方案.对改进后的泵内部流场进行了数值模拟,并与改进前泵内流场数值计算结果进行对比,性能预测表明改进后的泵基本达到了设计要求.在此基础上,对改进后的泵进行了实验测试,结果表明上述改进措施是有效的,数值模拟方法为水泵的优化设计提供了有力工具.  相似文献   

8.
吸气槽道形状对扩压叶栅性能的影响   总被引:6,自引:1,他引:5  
数值模拟了低速条件下吸气槽道宽度、角度变化对采用附面层吸除技术的大转角扩压叶栅气动性能影响。结果表明,附面层抽吸具有显著降低叶栅损失,改善流动,增加负荷及扩压能力等优点;吸气量相同时,槽道宽度增加可进一步改善角区流动并减小叶栅两端部损失,吸气角度变化则对吸气槽道出口压力有较大影响,为非均匀槽道宽度设计及工况变化时有效控制吸气量提供了设计自由度。  相似文献   

9.
为提高姿轨控液体火箭发动机同轴式喷注器掺混性能,设计了简化的双股矩形射流发生器,开展了等离子体控制射流实验,获得了射流流场结构与速度分布,结果表明与单股射流类似,双股矩形射流同样具有很好的相似性,随着射流速度差的增大,相似性进一步增强,混合点逐渐靠近射流发生器出口,混合角和混合率增大,而涡量最大值减小;等离子体对射流相...  相似文献   

10.
轴流风扇叶片端导叶作用的研究   总被引:2,自引:0,他引:2  
本文采用数值方法研究了叶片端导叶对轴流风扇性能的影响。通过与普通开式轴流风扇比较,分析了叶片端导叶对内部流动作用的机理.数值计算结果表明:叶片端导叶的安装位置将影响轴流风扇气动效率,安装叶片端导叶不能提高风扇静压升,但是在压力面安装时能有效地减小风扇叶顶泄漏流与主流的掺混损失;在设计流量下,压力面安装叶片端导叶使泄漏涡的作用范围较小,涡核更靠近吸力面;吸力面安装叶片端导叶弱化了泄漏涡的强度但没有减小泄漏涡的作用范围。  相似文献   

11.
基于数值计算的斜流泵级性能改进   总被引:1,自引:0,他引:1  
采用CFD数值模拟的方法对斜流泵级内部三维紊流流场进行计算,预测了其效率-流量、扬程-流量特性,并与实验结果进行了对比验证。根据得到的流场结果,通过斜流泵级水力尺寸改进-数值模拟分析的循环工作,在最终改进的斜流泵级预测流场中减少了泵内流场的漩涡运动,避免了出口回流的产生,削弱了叶顶间隙泄漏涡,提高了斜流泵级的效率,改进了能量特性,得到了斜流泵级改进前后流场与效率的对比。  相似文献   

12.
本文分别对常温空气和高温空气的平面自由射流进行了大涡模拟,采用分步投影法求解动量方程,亚格子项采用标准Smagorinsky亚格子模式模拟,并同时求解了标志物输运方程以实现数值流场显示。模拟结果给出了湍流的瞬态发展过程以及流动中拟序结构的发展演变过程,通过对常温射流和高温射流瞬态流场的比较揭示了射流中温度场与拟序结构间相互作用的细节过程。  相似文献   

13.
《Revue Generale de Thermique》1996,35(411):151-176
Numerical study of density effects on a turbulent mixing jet in microgravity. The aim of this paper is to present density effects on a turbulent heterogeneous mixing free jet in microgravity. The influence of the inlet density ratio S between the jet and the surrounding gas is pointed out from numerical simulations based on second order single point closure schemes. The mean quantities, entrainment, expansion and second order moments are presented. The density ratio varies from 0,14 to 5,11. Results are discussed in comparison with both experimental data and asymptotical considerations. It is shown that the density ratio effects on the jet development vanish far from the exit leading to self-similar profiles (full self-preservation according to George [1]).  相似文献   

14.
Mixing time measurements have been carried out in a cylindrical reactor irradiated with an ultrasonic horn fitted with different size tips. Liquid phase bulk velocities induced by the vibrating horn surface have been estimated from the mixing time measurements. A relationship has been established between the mean horn surface velocities (frequency x amplitude) and the mean velocities estimated from the mixing time measurements. A correlation has been developed for the prediction of the mixing time using a method similar to that used for liquid jet mixing. This could be the first step in defining the overall flow field, the information about which can then be used to get realistic numerical solutions of the Rayleigh-Plesset equation for a travelling cavity to understand the cavity dynamics in the various parts of the ultrasonic horn reactor.  相似文献   

15.
An experimental investigation of the influence of mixing intensification by small-size jets on the startup and characteristics of a gas ejector with central nozzle and a convergent mixing chamber is carried out. It is shown that at high flow rates of the secondary gas, the critical regime is not settled because of the formation of a thick subsonic layer near the chamber wall. In these cases, a stepwise startup was done. The range of critical regimes is limited by the reloading point, at which the velocity near the chamber wall becomes sonic. The critical regime breakdown behind the reloading point occurs due to the upstream propagation of the back pressure through the subsonic layer. The mixing intensification ensures the equalization of the velocity profile and the extension of the range of critical regimes. Despite the improvement of characteristics the mixing in an ejector with the central nozzle remains incomplete. Experimental characteristics are compared with the computed ones. The mixing process is isobaric in the computation without the consideration of dissipative losses because of which the rise of the pressure of a mixture of primary and secondary gases occurs.  相似文献   

16.
The paper presents the numerical simulation results of the surface roughness influence on gas-dynamic processes inside flow parts of a supersonic ejector. These simulations are performed using two commercial CFD solvers (Star- CCM+ and Fluent). The results are compared to each other and verified by a full-scale experiment in terms of global flow parameters (the entrainment ratio: the ratio between secondary to primary mass flow rate - ER hereafter) and local flow parameters distribution (the static pressure distribution along the mixing chamber and diffuser walls). A detailed comparative study of the employed methods and approaches in both CFD packages is carried out in order to estimate the roughness effect on the logarithmic law velocity distribution inside the boundary layer. Influence of the surface roughness is compared with the influence of the backpressure (static pressure at the ejector outlet). It has been found out that increasing either the ejector backpressure or the surface roughness height, the shock position displaces upstream. Moreover, the numerical simulation results of an ejector with rough walls in the both CFD solvers are well quantitatively agreed with each other in terms of the mean ER and well qualitatively agree in terms of the local flow parameters distribution. It is found out that in the case of exceeding the “critical roughness height” for the given boundary conditions and ejector’s geometry, the ejector switches to the “off-design” mode and its performance decreases considerably.  相似文献   

17.
搭建了二维超-超引射器实验系统,进行了二次喉道型式引射器启动特性和负载特性实验,获得了引射器混合室内流场纹影图,结果表明:超声速引射器临界启动状态下,混合室内存在反压引起的激波系;引射器完全启动状态下,主激波系可始于混合室后段,无需被完全吞入二次喉道内;二次流对引射器启动有助推效果,可使混合室内激波系后移;一次流对二次流有压缩作用,且一次流工作压力越高,压缩作用越强;一次流、二次流之间会形成明显的混合层,当一次流、二次流静压不匹配时,一次流喷管出口内端壁处将形成较强斜激波,其在固壁与混合层之间反射、交叉,并向下游延伸,会降低一次流引射性能。  相似文献   

18.
The fluidic oscillator is a device that generates an oscillating jet when supplied with fluid at pressure. The oscillator has no moving parts — the creation of the unsteady jet is based solely on fluid-dynamic interactions. Fluidic oscillators can operate at frequencies ranging up to 20 kHz, and are useful for flow control applications. The fluidic oscillator evaluated in the current study is comprised of two fluid jets that interact in an internal mixing chamber, producing the oscillating jet at the exit. Both porous pressure-sensitive paint (PSP) and dye-colored water flow are used to visualize the internal and external fluid dynamics of the oscillator. Porous PSP formulations have been shown to have frequency responses on the order of 100 kHz, which is more than adequate for visualizing the fluidic oscillations. In order to provide high-contrast PSP data in these tests, one of the internal jets of the fluidic oscillator is supplied with oxygen, and the other with nitrogen. Results indicate that two counter-rotating vortices within the mixing chamber drive the oscillations. It is also shown that the fluidic oscillator possesses excellent mixing characteristics.  相似文献   

19.
In the present paper, we have studied numerically the directed coflow stream effects on mean and turbulent flow properties of a turbulent plane wall jet in forced convection emerging into a directed coflow stream. The system of equations governing the studied configuration is solved with a finite difference scheme using a staggered grid for numerical stability, not uniform in the two directions of the flow. The modified version of the first-order low Reynolds number k–? turbulence model is used and compared to existing experimental findings. It is found that predicted results are in satisfactory agreement with the experimental data and that the wall jet fluid decays faster in presence of a directed coflow stream. Results show also that the increase of coflow deviation angles causes an increase of the growth rates of the dynamic and thermal half-width of the jet and enhances the turbulent mixing. It is found that the longitudinal development of normalised forms of the jet characteristics parameters at different directed coflow velocity ratios can be reasonably well collapsed onto universal trends through the use of momentum length scale.  相似文献   

20.
超音速等离子体点火过程的三维数值模拟   总被引:6,自引:0,他引:6       下载免费PDF全文
为了研究等离子体点燃超音速混合气流的过程,设计并验证了超音速燃烧室的三维计算模型,计算出了燃烧室等离子体点火时的流场参数和化学反应规律,分析了等离子体点火对燃烧室内燃烧的影响。计算结果表明:高温等离子体射流的滞止作用通过增加混合气在燃烧室内的停留时间提高了点火效率; 等离子体点火时燃烧区域的压力扩散比较充分,内部为压力相对平衡的低速流动; 高温等离子体射流高速射向混合气流时产生的速度矢量偏移扩大了点火面积,从而使点火效率得到提高; 氢气、空气燃烧的燃烧产物主要是水,燃烧区域局部温度主要受局部放热反应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号