首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Essentially fully dense titania thin films were spin coated on fused quartz substrates under identical conditions and subjected to annealing over the range 750°–900°C. The films were of a consistent ~400 nm thickness. The anatase → rutile phase transformation temperature was between 750°C and 800°C, with first-order kinetics; annealing at 900°C yielded single-phase rutile. Silicon contamination from the fused quartz substrate was considered to be critical since it suppressed both titania grain growth (maintaining constant grain size) and the phase transformation (occurring at an unusually high temperature); its presence also was considered to be responsible for the formation of lattice defects, which decreased the transmittances and the band gaps.  相似文献   

2.
Transparent semiconducting thin films of titanium oxide (TiO2) were deposited on glass substrates by the sol–gel method and spin-coating technique. The physical properties of the prepared films were studied as a function of the number of spun-cast layers. The microstructure and surface morphology of the TiO2 films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), with respect to the film thickness. The XRD analysis reveals that the films are polycrystalline with an anatase crystal structure and a preferred grain orientation in the (101) direction. The morphological properties were investigated by AFM, which shows a porous morphology structure for the films. The optical properties of the films were characterized by UV–Visible spectrophotometry, which shows that the films are highly transparent in the visible region and their transparency is slightly influenced by the film thickness, with an average value above 80 %. The dependence of the refractive index (n), extinction coefficient (k), and absorption coefficient (α) of the films on the wavelength was investigated. A shift in the optical band gap energy of the films from 3.75 to 3.54 eV, as a function of the film thickness, has been observed.  相似文献   

3.
We prepared a porous thin film by spin-coating of a cellulose acetate butyrate (CAB) solution in tetrahydrofuran under a humid environment. Due to evaporative cooling during spin-coating, condensed water droplets were formed by a breath figure on the CAB solution, and these developed a porous structure after complete drying. By varying the solution concentration and rotating speeds, two distinct morphologies were generated: top and bottom layers with higher and lower porosities, respectively. We found that the two-layer porous film coated on glass exhibited low reflectance of less than 1% in the near-infrared (NIR) regime corresponding to wavelengths between 900 and 2200 nm. Since the porous structure was very uniform over a large area, the film could be easily employed for broad-band antireflection coating at NIR wavelengths.  相似文献   

4.
We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.  相似文献   

5.
Cellulose nanocrystal submonolayers by spin coating   总被引:1,自引:0,他引:1  
Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images, anionic cellulose nanocrystals formed small aggregates on the anionic silica substrate, whereas a uniform two-dimensional distribution of nanocrystals was achieved on the cationic titania substrate. The uniform distribution of cellulose nanocrystal submonolayers on titania is an important factor when dimensional analysis of the nanocrystals is desired. Furthermore, the amount of nanocrystals deposited on titania was multifold in comparison to the amounts on silica, as revealed by AFM image analysis and X-ray photoelectron spectroscopy. Amorphous cellulose, the third substrate, resulted in a somewhat homogeneous distribution of the nanocrystal submonolayers, but the amounts were as low as those on the silica substrate. These differences in the cellulose nanocrystal deposition were attributed to electrostatic effects: anionic cellulose nanocrystals are adsorbed on cationic titania in addition to the normal spin coating deposition. The anionic silica surface, on the other hand, causes aggregation of the weakly anionic cellulose nanocrystals which are forced on the repulsive substrate by spin coating. The electrostatically driven adsorption also influences the film thickness of continuous ultrathin films of cellulose nanocrystals. The thicker films of charged nanocrystals on a substrate of opposite charge means that the film thickness is not independent of the substrate when spin coating cellulose nanocrystals in the ultrathin regime (<100 nm).  相似文献   

6.
LiMn2O4 thin films were prepared by spin coating through intermediate amorphous layer route (IALR) and intermediate crystallized layer route (ICLR). The phase identification, surface morphology, and electrochemical properties of the films prepared by different crystallization routes were studied by X-ray diffraction, scanning electron microscopy, and galvanostatic charge–discharge experiments. The results show that both films prepared by different crystallization routes are homogeneous and crack free. Compared with the film prepared by IALR, the film prepared by ICLR shows smaller grain size and is smoother and denser. The LiMn2O4 film prepared by ICLR delivers the specific capacity of 39.8 μAh?cm?2?μm?1, which is higher than 35.6 μAh?cm?2?μm?1 for the one prepared by IALR. The capacity loss of the film prepared by ICLR after being cycled 100 times is 3.4 %, which is smaller than that of 5.5 % for the film prepared by IALR. The film prepared by ICLR shows higher specific capacity and better cycling behavior than the one prepared by IALR.  相似文献   

7.
The results of numerical modeling of polymeric film formation under mass force action are presented. The instability of non‐Newtonian liquid front edge at the initial stage of flow over a disk is studied. The quasi‐stationary shape of the liquid film (in front edge vicinity) speading over the surface is determined for certain rheology laws. At the modeling of the second stage of coating flow, the special attention was paid to the effects connected with the two‐dimensional character of the flow. The impact of rheological properties of a liquid on the free surface shape was studied using codes that calculate the two‐dimensional non‐stationary flow of non‐Newtonian liquid. The factors that determine the final shape of polymeric coating free surface are discussed.  相似文献   

8.
Efficient non-doped OLEDs have been achieved using new binuclear tetracoordinate organoboron complexes containing 2-(N-aryl)formiminopyrrolyl ligands.  相似文献   

9.
Cellulose - Cotton, the most popular textile fibre used today, suffers from high combustibility and a propensity for microbial growth. In this study, we used oxygen tolerant, visible...  相似文献   

10.
We study the time evolution of a single spin coupled by exchange interaction to an environment of interacting spin bath modeled by the XY Hamiltonian. By evaluating the spin correlator of the single spin, we observed that the decay rate of the spin oscillations strongly depends on the relative magnitude of the exchange coupling between the single spin and its nearest neighbor J(') and coupling among the spins in the environment J. The decoherence time varies significantly based on the relative coupling magnitudes of J and J('). The decay rate law has a Gaussian profile when the two exchange couplings are of the same order J(') approximately J but converts to exponential and then a power law as we move to the regimes of J(')>J and J(')相似文献   

11.
In this paper, a formalism for studying the dynamics of quantum systems coupled to classical spin environments is reviewed. The theory is based on generalized antisymmetric brackets and naturally predicts open-path off-diagonal geometric phases in the evolution of the density matrix. It is shown that such geometric phases must also be considered in the quantum–classical Liouville equation for a classical bath with canonical phase space coordinates; this occurs whenever the adiabatics basis is complex (as in the case of a magnetic field coupled to the quantum subsystem). When the quantum subsystem is weakly coupled to the spin environment, non-adiabatic transitions can be neglected and one can construct an effective non-Markovian computer simulation scheme for open quantum system dynamics in classical spin environments. In order to tackle this case, integration algorithms based on the symmetric Trotter factorization of the classical-like spin propagator are derived. Such algorithms are applied to a model comprising a quantum two-level system coupled to a single classical spin in an external magnetic field. Starting from an excited state, the population difference and the coherences of this two-state model are simulated in time while the dynamics of the classical spin is monitored in detail. It is the author’s opinion that the numerical evidence provided in this paper is a first step toward developing the simulation of quantum dynamics in classical spin environments into an effective tool. In turn, the ability to simulate such a dynamics can have a positive impact on various fields, among which, for example, nanoscience.  相似文献   

12.
We investigate effects of two spin-coating parameters, relative humidity (5% < or = RH < or = 80%) in ambient atmosphere and water content (3 wt % < or = f(H2O) < or = 20 wt %) in solution (rich in tetrahydrofuran), on the structure of breath figures (BF) formed in spin-cast films of polar poly(methyl methacrylate) (PMMA) and PMMA mixed with nonpolar polystyrene (PS). Film morphologies, examined with atomic and lateral force microscopy, are analyzed with integral geometry analysis to yield morphological BF measures. In PMMA, water added to solution has much stronger impact than that from moisture on formed BFs, which could be ordered (with conformational entropy S approximately 0.9-1.0). In PMMA/PS, BFs decorate exclusively polar PMMA domains, resulting in morphologies with two length scales (sub-micrometer BFs and domains >10 microm). This suggests a novel strategy for herarchic structure formation in multicomponent polymer films. In PS/PMMA, BFs are better developed than in pure PMMA spin-coated in identical conditions. These observations show that the air boundary layer facing the spin-cast polymer film (region) is more important than the ambient atmosphere.  相似文献   

13.
The effects of the preparation conditions in a dip coating process on polyimide composite membranes have been investigated. Polyimide precursor obtained from pyromellitic dianhidride (PMDA) and 4,4′-oxydianiline (ODA) was mixed with triethylamine and poly(amic acid)tri-ethylamine salt (PAA salt) was made. An asymmetric polyimide membrane (PI-2080) as a supporting membrane was dipped in a PAA salt (concentration 0–5 wt.%) methanol solution. The coating layers of PAA salt were converted to these of polyimide by annealing at 200°C for 3 h in an ordinary vacuum oven.The performance of the polyimide composite membrane was evaluated by gas permeation (N2, O2, CO2, at 1 kg/cm2) and pervaporation (feed: a 95 vol.% ethanol aqueous solution at 30–60°C). The composite membranes prepared using a coating solution of 5 wt.% PAA salt showed the CO2/N2 selectivity of over 25 on gas permeation, and separation factor α (H2O/EtOH) of over 800 with a total flux of 0.21 kg/m2 h on pervaporation.  相似文献   

14.
15.
Magnetism of hydroanilino ladder polymer and indigo polymer which were prepared by the oxidative polyrecombination of captodative substituted methane and indoxyl, respectively, was studied by ESR spectroscopy and magnetic susceptibility measurement. It was found that both spin polymers contained domains with high spin state in their structures and their spins were much more ordered with decreasing temperature.  相似文献   

16.
Mesoporous nano-crystalline γ-Al2O3 with high surface area prepared by a microemulsion (ME) method was employed as carrier for nickel catalysts in dry reforming of methane for syngas production. The structural properties of the catalysts were characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area analysis, temperature programmed reduction and oxidation and scanning electron microscopy techniques. Microemulsion showed it to be a promising way for the production of nano-crystalline aluminum oxide, and the nickel catalysts prepared with this support have significant features and properties to use in the dry reforming reaction. The results revealed that the prepared γ-Al2O3 exhibited a nano-crystalline structure (crystal size: c.4.8 nm) with a high specific surface area (308 m2 g?1). In addition, the catalysts with different nickel contents exhibited high catalytic activity in the dry reforming reaction. The results also showed that an increase in Ni loading from 5 to 15 wt% caused a decrease in the specific surface area and nickel dispersion.  相似文献   

17.
Ordered mesoporous zirconium phosphate films were prepared on a silicon substrate by spin coating using a mixture of zirconium isopropoxide, triethyl phosphate, Pluronic P123 triblock copolymer, nitric acid, ethanol, and water. The spin-on film was consecutively treated with vapors of phosphoric acid and ammonia. The post-vapor treatments effectively enhanced the thermal stability of an ordered mesostructure when heated to 500 degrees C. XRD and TEM analyses show that the calcined zirconium phosphate film has a hexagonal structure with straight channels parallel to the film surface. The zirconium phosphate film exhibited high proton conductivity of 0.02 S/cm parallel to the film surface at 80% RH and 25 degrees C.  相似文献   

18.
Novel abrasion resistant coating materials prepared by the sol-gel method have been developed and applied on the polymeric substrates bisphenol-A polycarbonate and diallyl diglycol carbonate resin (CR-39). These coatings are inorganic/organic hybrid network materials synthesized from 3-isocyanatopropyltriethoxysilane functionalized organics and metal alkoxide. The organic components are 3,3-iminobispropylamine (IMPA), resorcinol (RSOL), diethylenetriamine (DETA), poly(ethyleneimine) (PEI), glycerol and a series of diols. The metal alkoxides are tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS). These materials are spin coated onto bisphenol-A polycarbonate and CR-39 sheets and thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that the abrasion resistance of inorganic/organic hybrid coatings in the neat form or containing metal alkoxide can be very effective to improve the abrasion resistance of polymeric substrates. The adhesion tests show that the adhesion between coating and substrate can be greatly improved by treating the polymeric substrate surface with a primer solution of isopropanol containing 3-aminopropyltriethoxysilane (3-APS). The interaction between 3-APS and the polycarbonate surface was investigated by a molecular dynamics simulation. The results strongly suggest that the hydrogen bonding between the amino group of the 3-APS and ester group in the polycarbonate backbone are sufficiently strong to influence the orientation of the primer molecules. The abrasion resistance of these new coating systems is discussed in light of the structure of the organic components. All of these results show that these coating materials have excellent abrasion resistance and have potential applications as coating materials for lenses and other polymeric products.  相似文献   

19.
TiAlSiN coatings with different Si contents were deposited on silicon and high‐temperature alloy by using a hybrid physical vapor deposition coating system, where the cathodic arc ion plating was combined with a twin target mid‐frequency magnetron sputtering. The chemical composition, microstructure, cross‐sectional structure and morphology were carried out by X‐ray photoelectron spectroscope (XPS), X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscope (TEM), respectively. NanoTest 600 nanomechanical system and ball‐on‐disc friction tester were used to investigate the mechanical and friction properties of TiAlSiN coatings. The worn surface of the TiAlSiN coatings and counterballs were investigated by means of surface profilometer and optical microscope. The wear rates were also measured by surface profilometer. The results showed that the Si addition did not change the coatings growth orientation, and the coating transfered into amorphous phase when the Si content reached about 13.9 at.%. The tribological properties and the hardness were improved by solid solution of Si atoms and grain boundary strengthening of SiNx amorphous phase with moderate Si content addition. In addition, the SiNx amorphous phase improved oxidation resistance of TiAlN coating, but with a high Si content (more than 8.3 at.% in this work) the agglomeration of SiNx amorphous phase would reduce the mechanical properties and oxidation resistance of the coating. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
ZnO thin films were deposited onto glass subsrates by a Sol-gel spin coating method. The structural and optical properties of ZnO thin films were investigated. The molar ratios of the zinc acetate dihydrate to Monoethanolamine were maintained 1:1. The as-grown film was sintered 250 °C for 10 min, then annealed in air at 500 °C for 30 min. The XRD results indicate that ZnO films were strongly oriented to the c-axis of the hexagonal nature. Absorption measurements were carried out as a function of temperature with 10 K steps in the range 10–320 K. The band gap energy was measured 3.275 and 3.267 eV for 0.5 and 1.0 molarity (M) ZnO thin films at 300 K. The steepness parameters were observed between 10 and 320 K and their extrapolations converged at (E0, α0) = 3.65 eV, 172,819 cm−1 and 3.70 eV, 653,436 cm−1 for 0.5 and 1.0 M ZnO thin films, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号