首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal degradation of poly(vinyl acetate) (PVA), poly(vinyl alcohol) (PVAL), vinyl acetate-vinyl alcohol (VAVAL), vinyl acetate-vinyl-3,5-dinitrobenzoate (VAVDNB) and vinyl alcohol-3,5-dinitrobenzoate (VALVDNB) copolymers have been studied using differential thermal analysis (DTA) and thermogravimetry (TG) under isothermal and dynamic conditions in nitrogen. Thermal analysis indicates that PVA and PVAL are thermally more stable than VAVAL copolymers, being PVAL the most stable polymer. The presence of small amounts of vinyl-3,5-dinitrobenzoate (VDNB) in PVA or PVAL produces a marked decrease in the thermal stability of both homopolymers, being VALVDNB copolymers the less stable materials. The apparent activation energy of the degradative process was determined by the Kissinger and Flynn-Wall methods which agree well.  相似文献   

2.
Two new methods of inner capillary coating with poly(vinyl alcohol) (PVAL) have been investigated and evaluated by performing DNA capillary electrophoresis (CE) using PVAL as a separation medium and by measuring the electroosmotic flow (EOF) mobility. The treatment of capillaries with a silanol-group modified PVAL (PVAL-Si) has been found to give good coating effects for improving the resolution of DNA CE and for reducing the EOF. This coating must be effectively achieved by combining the adsorptive property of PVAL chains onto silica with the reaction between the silanol groups of PVAL-Si and the silica surface. The adsorption of PVAL onto silica has been observed by using atomic force microscopy (AFM) for PVAL-Si as well as for a nonmodified PVAL as a control. The coating with PVAL that links to the capillary wall surface with more hydrolytically stable bonding, -Si-C-, has been formed by performing the Grignard reaction, followed by in-capillary polymerization of vinyl acetate (VAc) and hydrolysis. This coating has been found to be effective for improving the resolution of DNA CE and for reducing the EOF.  相似文献   

3.
The thermal degradation of ethylene-vinyl acetate (EVA), ethylene-vinyl-3,5-dinitrobenzoate (EVDNB) and ethylene-vinyl alcohol (EVAL) copolymers have been studied using differential thermal analysis (DTA) and thermogravimetry (TG) under isothermal and dynamic conditions in nitrogen. Thermal analysis indicates that EVA copolymers are thermally more stable than EVDNB samples. The degradation of the copolymers considered occurs as an additive degradation of each component polyethylene (PE) and poly(vinyl acetate) (PVA), poly(vinyl-3,5-dinitrobenzoate) (PVDNB) or poly(vinyl alcohol) (PVAL). The apparent activation energy of the decomposition was determined by the Kissinger and Flynn-Wall methods which agree well.  相似文献   

4.
Poly(vinyl alcohol) (PVAL) forms a strong hydrogen-bond complex with ozone. The interaction energy is of the order of 47.3 kJ/mol as calculated from the blue shift undergone by the ozone absorption band in the UV after its complexation with PVAL. This fact may have many important practical implications in the application of PVAL in wastewater treatment both in terms of O3 dissolution and persistence in water. Furthermore, PVAL is easily biodegradable but it is also slowly degraded by ozone. It is shown by viscometry, electrical conductimetry and by pH measurements that PVAL is degraded by ozone attack with extensive chain breaking. By FT-IR spectroscopy it has been shown that the final product is a PVAL oligomer with numerous ketonic groups along the main oligomer backbone and with carboxylic end groups. A mechanism of ozone degradation of PVAL has been presented and discussed. The chain scission is based on the ozone oxidation of the alcoholic groups of PVAL with formation of ketonic groups which in turn are the source of a keto-enol tautomerism which leads to random chain scission by further O3 attack. Viscometric measurements show that the main viscosity drop of PVAL is achieved when a nominal stoichiometric ratio of O3/PVAL < 0.05 is reached which means one ozone molecule for every >20 PVAL monomeric units. For comparison PVAL has been oxidized also with paraperiodic acid.Ozonized PVAL has been studied by thermal analysis (TGA, DTG and DTA) in comparison to a reference untreated PVAL under N2. The oxidation of PVAL causes its complete amorphization since the crystalline melting point of PVAL at 235 °C is no longer detectable in the case of ozonized PVAL. In any case ozonized PVAL shows a better thermal stability which can be confirmed for instance by a higher maximum decomposition rate temperature as measured by DTG. This result is in agreement with theoretical calculations made by group increments according to Van Krevelen's method which predicts a higher decomposition temperature for a PVAL having ketonic groups in place of alcoholic moieties in the main polymer backbone.  相似文献   

5.
The properties of poly(vinyl alcohol)/graphite oxide (PVAL/GO) composites were investigated during UV irradiation using a mercury lamp (λ = 254 nm). The course of photochemical reactions was monitored by FTIR and UV-vis absorption spectroscopies as well as by estimation of insoluble gel amount formed during crosslinking. Changes in average molecular weights resulting from main chain scission in PVAL were measured by gel permeation chromatography. Composite microstructure was characterized by scanning electron microscopy and X-ray diffraction. The thermal behaviour of composites was determined by a thermogravimetric analysis. It was found that 0.1-5.0% GO addition to polymer bulk slightly hampers photooxidative degradation of PVAL. Thermal degradation in PVAL composites starts at somewhat lower temperatures in the presence of GO but this trend is changed in UV-irradiated samples.  相似文献   

6.
The impact of gold nanoparticles (GNPs) on the microchip electrophoretic separation of double-stranded (ds) DNA using poly(ethylene oxide) (PEO) is described. Coating of the 75-microm separation channel on a poly(methyl methacrylate) (PMMA) plate in sequence with poly(vinyl pyrrolidone), PEO, and 13-nm GNPs is effective to improve reproducibility and resolution. In this study, we have also found that adding 13-nm GNPs to 1.5% PEO is extremely important to achieve high resolution and reproducibility for DNA separation. In terms of the stability of the GNPs, 100 mM glycine-citrate buffer at pH 9.2 is a good buffer system for preparing 1.5% PEO. The separation of DNA markers V and VI ranging in size from 8 to 2176 base pairs has been demonstrated using the three-layer-coated PMMA microdevice filled with 1.5% PEO containing the GNPs. Using these conditions, the analysis of the polymerase chain reaction products of UGT1A7 was complete in 7 min, with the relative standard deviation values of the peak heights and migration times less than 2.3% and 2.0%, respectively. In conjunction with stepwise changes of the concentrations of ethidium bromide (0.5 and 5 microg/ml), this method allows improved resolution and sensitivity for DNA markers V and VI.  相似文献   

7.
以交联聚乙烯醇为载体的离子交换剂对蛋白质的分离性能   总被引:2,自引:0,他引:2  
本文对阴离子交换剂DEA—PVT常压液相离子交换色谱分离蛋白质的性能、分离条件进行了探讨。结果表明其对蛋白质的分离性能良好,容易洗脱。与载体交联聚乙烯醇相比,DEA—PVT对蛋白质的非特异性吸附明显降低。  相似文献   

8.
A study of the oxidation of poly(vinyl alcohol) (PVAL) by potassium persulfate (KPS) in aqueous solutions showed that the decomposition of KPS was greatly enhanced by the presence of PVAL, its hydroxyl groups being oxidized to ketones in a yield of about one mole of ketone from one mole of KPS. The decomposition rate of KPS was found to be given by the equation, ?d[S2O82?]/dt = k[S2O82?] [PVAL]1/2, which was essentially the same as in the oxidation of alcohols of low molecular weight by persulfate ion. The occurrence of gelation of PVAL solutions and graft copolymerization of methyl methacrylate (MMA) onto PVAL in the presence of KPS was evidence for PVAL radical as an intermediate species in the oxidation of PVAL. A characterization study was also carried out for the reaction products of the graft copolymerization of MMA onto PVAL with KPS in dimethyl sulfoxide solution.  相似文献   

9.
An optimized procedure for the fast separation of DNA sequencing fragments in short bare fused-silica capillaries filled with highly alkaline solutions of replaceable linear polyacrylamide is presented. High denaturing abilities of the separation media at pH values over 12 are the main reason for their applications in analyses of ssDNA fragments. Moreover, the alkaline solutions of polyacrylamide provide other advantageous properties: three times higher electrophoretic mobility of ssDNA fragments in comparison to those in urea, negligibly low electroosmotic flow in uncoated capillaries, and an adequate stability to a fast alkaline hydrolysis. The separation power of this procedure is enhanced strongly by using monocarboxy poly(ethylene glycol), a terminator for transient isotachophoresis, which eliminates the electromigration dispersion. A high separation efficiency of our system enables to reduce analysis time to several minutes by decreasing the effective lengths of capillaries to 7 cm. A special sample introduction by diffusion is successfully applied. The experimental results demonstrate a potential of the alkaline electrolytes for an implementation in diagnostic sequencing practice.  相似文献   

10.
Braun  D.  Walter  E. 《Colloid and polymer science》1976,254(4):396-399
Zusammenfassung Die Konkurrenz von inter- und intramolekularer Vernetzung bei der Umsetzung von Polyvinylalkohol (PVAL) mit Terephthalaldehyd wurde untersucht. Die Abhängigkeit der Grenzviskositätszahl der Reaktionsprodukte von der Ausgangskonzentration an PVAL erlaubt Rückschlüsse, ob inter- oder intramolekulare Verknüpfung stattgefunden hat. Für die unter Knäuelkontraktion verlaufende rein intramolekulare Reaktion zeigt ein Vergleich der experimentellen Ergebnisse mit den nachKuhn undMajer berechneten theoretischen Werten gute Ylbereinstimmung.
Summary The competitive inter- and intramolecular crosslinking in the reaction of poly(vinyl alcohol) with terephthalaldehyde has been investigated. The dependence of the intrinsic viscosity of the reaction products on the initial concentration of poly(vinyl alcohol) permits the conclusion, whether or not intra- or intermolecular crosslinking has occurred. For the coil contraction due to pure intramolecular crosslinking a comparison of the experimental results with calculations according toKuhn andMajer showed good agreement.


Herrn Prof. Dr.F. Patat mit besten Wünschen zum 70. Geburtstag gewidmet.  相似文献   

11.
Semi-crystalline poly(vinyl alcohol) was modified by UV radiation with acrylic acid monomer to get interpenetrating poly(acrylic acid) modified poly(vinyl alcohol), PVAAA, membrane. The stability of various PVAAA membranes in water, 2 M CH3OH, 2 M H2SO4, and 40 wt% KOH aqueous media were evaluated. It was found that the stability of PVAAA membrane is stable in 40 wt% KOH solution. The PVAAA membranes were characterized by differential scanning calorimetry, X-ray diffraction, and thermogravimetry analysis. These results show that (1) the crystallinity in PVAAA decreased with increasing the content of poly(acrylic acid) in the PVAAA membranes. (2) The melting point of the PVAAA membrane is reduced with increasing the content of poly(acrylic acid) in the membrane. (3) Three stages of thermal degradation were found for pure PVA. Compared to pure PVA, the temperature of thermal degradation increased for the PVAAA membrane. The various PVAAA membranes were immersed in KOH solution to form polymer electrolyte membranes, PVAAA-KOH, and their performances for alkaline solid polymer electrolyte were conducted. At room temperature, the ionic conductivity increased from 0.044 to 0.312 S/cm. The result was due to the formation of interpenetrating polymer chain of poly(acrylic acid) in the PVAAA membrane and resulting in the increase of charge carriers in the PVA polymer matrix. Compared to the data reported for different membranes by other studies, our PVAAA membrane are highly ionic conducting alkaline solid polymer electrolytes membranes.  相似文献   

12.
We present a single‐step route for the preparation of crosslinked poly(vinyl alcohol) (PVAL) nanofibers where a conventional electrospinning setup can be used. The simple crosslinking chemistry and the fast and easily applicable technique is an important step towards large‐scale production. In contrast to conventional systems, the PVAL crosslinker solution exhibited no increase in viscosity during storage and can therefore be used even after long shelf‐times before electrospinning. In addition, the crosslinked nanofibrous mats exhibited a gel content of almost 100%, indicating complete crosslinking; they did not dissolve in water, and no PVAL was found in the aqueous extract. The E‐moduli of the nanofibrous mats before and after water immersion could be measured by an intermodulation atomic force microscopy technique. A denser nanofibrous texture with enhanced mechanical properties can be observed after long‐term water immersion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The reaction of poly(vinyl alcohol) (PVAL) with V(V), i.e., pentavalent vanadium ion, was studied in aqueous H2SO4 medium. The viscosity change of reaction mixture with time showed a peculiar feature owing to formation of labile complex between V(V) and PVAL and the subsequent decomposition of the complex. On the other hand, the change of viscosity disappeared when NaOH was added during the reaction to neutralize H2SO4 in the reaction mixture. Under a suitable condition, the reaction mixture set to a gel as a result of complex formation. It appeared that reactive sites in PVAL responsive to complexing with V(V) were 1,2-glycol unit and 1,2-ketoalcohol unit resulting from the oxidation of 1,2-glycol by V(V). The rate of oxidation was increased with increasing H2SO4 concentration. The main-chain scission of PVAL took place to an insignificant extent, unless the reaction condition was severe. Based on the results obtained a reaction mechanism has been proposed.  相似文献   

14.
Single-base resolution in the separation of DNA markers V and VI was achieved in the presence of electroosmotic flow (EOF), using poly(ethylene oxide) (PEO) solutions containing ethidium bromide (EtB) under isocratic conditions. Furthermore, a new approach called stepwise capillary electrophoresis (SCE) has been developed for DNA analysis, including stepwise changes in PEO concentration, EtB concentration as well as both PEO and EtB concentrations, wherein the EOF was used to introduce different PEO solutions into the capillary during the separation. DNA fragments smaller than 80 bp were both detected under isocratic conditions using 20 micrograms/ml EtB, and SCE using 1 and 20 micrograms/ml EtB, but not under isocratic conditions using 1 microgram/ml EtB. Resolution and speed of the DNA separation in SCE were different from those obtained from isocratic means, indicating that DNA underwent different concentrations of PEO and EtB in SCE. For example, DNA fragments with 458 and 504 base pairs (bp) were partially resolved in SCE, but not under isocratic conditions. The results further suggest that it is worth developing gradient techniques for widening the separation range and enhancing resolution in DNA analysis.  相似文献   

15.
Solution and interfacial properties of binary polymer mixtures of poly(maleic acid/octyl vinyl ether) (PMAOVE) and poly(vinyl caprolactam) (PVCAP) have been studied for the alumina/water system. To test the hydrophobic effect, mixtures of poly(maleic acid/methyl vinyl ether) (PMAMVE) and PVCAP are also investigated and compared to the behavior of PMAOVE/PVCAP. At low pH, both polymer mixtures become turbid upon mixing. The turbidity increases at low mixing ratios of PVCAP to the vinyl ether component, reaches a maximum, and then decreases at higher mixing ratios. Upon shifting the pH to the alkaline range, i.e., pH 7.5 and above, the turbid solution becomes clear for both the polymer mixtures. Cloud point measurements indicate the absence of complexation of PVCAP with PMAMVE under the alkaline conditions, but strong interaction with PMAOVE. This is attributed to the different forces involved in the complexation among the polymers: H bonding for PVCAP/PMAMVE and both H bonding and hydrophobic effects for PVCAP/PMAOVE. At the alumina/water interface, the normally nonadsorbing PVCAP is triggered to adsorb by PMAOVE, attributed to the hydrophobic complexation between the two. However, the adsorption of PVCAP shows a maximum as a function of the concentration of PMAOVE. At concentrations of PMAOVE above the onset of its own plateau adsorption, the amount of PVCAP triggered to adsorb is reduced possibly due to the polymer complex formation in solution.  相似文献   

16.
A novel polymer complex system sensitive to glucose was studied as a candidate material for formulating a chemically regulated insulin release system. A ternary copolymer of N-vinyl-2-pyrrolidone (NVP), 3-acrylamidophenylboronic acid (AAm-PBA) and N,N-dimethylaminopropylacrylamide (DMAPAA) (poly(NVP-co-PBA-co-DMAPAA)) was synthesized by radical copolymerization. The phenylboronic acid group in this copolymer serves as a glucose sensor moiety. Poly(NVP-co-PBA-co-DMAPAA) was soluble in water in the pH range of 3–12, in sharp contrast to a binary copolymer of NVP and AAm-PBA (poly(NVP-co-PBA)) which showed solubility only under alkaline aqueous conditions, where the boronic acid group is in a tetrahedral ionized form. The protonated amino group in poly(NVP-co-PBA-DMAPAA) contributed to increase the solubility of the polymer under physiological and acidic aqueous conditions. Furthermore, poly(NVP-co-PBA-co-DMAPAA) formed a stable polymer complex gel with poly(vinyl alcohol) (PVA) in pH 7.4 phosphate buffered solution due to the formation of a covalent linkage between the boronic acid groups in ternary copolymer and diol units in PVA. The release of myoglobin as model protein from the complex gel was increased immediately after the addition of glucose, due to the transition of gel into sol state, indicating the feasibility of this complex gel as a candidate material for a glucose-responsive delivery system for insulin.  相似文献   

17.
The separation and purification of important biomolecule deoxyribonucleic acid (DNA) molecules are extremely important. The adsorption technique among these methods is highly preferred as the adsorbent cryogels are pretty much used due to large pores and the associated flow channels. In this study, the adsorption of DNA via Co(II) immobilized poly(2-hydroxyethyl methacrylate-glycidyl methacrylate) [poly(HEMA-GMA)] cryogels was performed under varying conditions of pH, interaction time, initial DNA concentration, temperature, and ionic strength. For the characterization of cryogels; swelling test, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), surface area (BET), elemental and ICP-OES analysis were performed. L-lysine amino acid was chosen as Co(II)-chelating agent and the adsorption capacity of cryogels was determined as 33.81 mg DNA/g cryogel. Adsorption of pea DNA was studied under the optimum adsorption conditions and DNA adsorption capacity of cryogels was found as 10.14 mg DNA/g cryogel. The adsorption process was examined via Langmuir and Freundlich isotherm models and the Langmuir adsorption model was determined to be more appropriate for the DNA adsorption onto cryogels.  相似文献   

18.
The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.  相似文献   

19.
A novel method for rapid separation and determination of ascorbic acid and uric acid has been developed with a polycation-modified poly(dimethylsiloxane) (PDMS) microchip under a negative-separation electric field. Just by flushing the microchip with aqueous solutions of the polycations, poly(allylamine) hydrochloride, poly(diallyldimethylammonium chloride) or chitosan could be stably coated on the PDMS microchannel surface, which resulted in a reversed electroosmotic flow and thus the rapid and efficient separation of the two substrates. Factors influencing the separation, including polycation category, buffer solution, detection potential and separation voltage, were investigated and optimized. The cheapness, rapid analysis speed and the successful analysis of human urine make this microsystem attractive for application in clinics. Figure The electropherograms of 100 μ/mL AA and UA in (1) PAH, (2) PDDA, (3) Chitosan modified PDMS microchannels and native PDMS microchip (4).  相似文献   

20.
We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15-cm long hot-embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single-loading step and provides high-resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot-embossed device performance is characterized and compared to injection-molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号