首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A plasma sustained by surface waves (SW) has been used to study the deposition rate R of hydrocarbon and fluorocarbon plasma polymer films as a function of excitation frequency f=/2 in the range 12–400 MHz. The SW technique allows one to vary only f while keeping constant all other parameters known to influence R, for example, power density in the plasma P. A plot of R/P at a total pressure of 200 m Torr (27 Pa) displays two plateaus, that at f<30 MHz being about five times lower than that at f100 MHz. This is attributed to the fact that electron energy distribution functions differ fundamentally at radio- (f50 MHz) and microwave (f100 MHz) frequencies, for the gas pressure range considered.  相似文献   

2.
Structural changes induced by Ar plasma discharge in low and high density polyethylene (LDPE and HDPE) were studied by different techniques. AFM and SEM methods were used to determine surface morphology, the changes in chemical structure were followed using FTIR and UV-vis spectroscopy. The content and the depth profile of incorporated oxygen was determined by RBS method. The degree of polymer ablation was determined gravimetrically. Standard goniometry was used to determine contact angle and to follow aging of plasma modified polymer. As a result of plasma treatment a lamellar structure or spherulites appear on the surface of HDPE and LDPE, respectively. Pronounced increase of the surface roughness is observed on HDPE contrary to LDPE. Plasma treatment for 400 s leads to the ablation of the surface layer of about 0.6 and 1 μm thick for LDPE and HDPE, respectively. Plasma treatment results in oxidation of the polymer surface layer which is more pronounced in HDPE. Concentration maximum of incorporated oxygen lies 25 nm beneath the sample surface in both polymer types. After exposure to plasma discharge carbonyl, carboxyl and amide groups were detected in the polymer surface layer together with CC bonds either in aromatic or in aliphatic structures. Immediately after the plasma treatment strong decline of the contact angle is observed, the decline being larger in HDPE. Later, in aged specimens the contact angle increases rapidly. The increase, which may be due to rearrangement of degraded structures, is stronger in the specimens exposed to plasma for longer times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号