共查询到20条相似文献,搜索用时 15 毫秒
1.
Through time‐dependent gas transport properties, we have investigated the physical aging process of amorphous glassy polymer films made from a polynorbornene. By combining the concepts of free volume and the kinetic theory of glass stabilization, it was found that the time dependence of the gas permeability could be rationalized through the thickness dependence of the glass transition temperature. A mathematical relationship was developed that directly relates polymer physical aging (tracked by the gas permeability decay) and sample thickness. It was confirmed by permeation measurements with nitrogen and helium that the aging process is accelerated for thin glassy polymer films (about 8000 Å). The theoretical results show that accelerated aging for thin films compared to thick films can be qualitatively predicted, based on the decrease in the glass transition temperature when the film thickness decreases. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2239–2251, 1999 相似文献
2.
The effects of polymer molecular weight and temperature on the physical aging of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is examined. Gas permeability and refractive index were monitored during the aging process for PPO film samples at three aging temperatures below the glass transition temperature. Comparisons between the two samples of PPO that differ widely in molecular weight reveal an insignificant difference, which support the notion that above a critical molecular weight range there is little influence on aging rate. Increased temperature, over the limited range of 35–55 °C, results in higher aging rates for films made from both PPO materials. The rate of aging decreases strongly with increasing film thickness over the range examined, ∼0.4–25 μm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1390–1398, 2007 相似文献
3.
Palladium is an important catalytic metal, and it is desirable to develop a surface-enhanced Raman scattering (SERS) technique to investigate the reagent and product species adsorbed on its surface. Unfortunately, Pt-group metals, e.g., Pt and Pd, have been commonly considered as non- or weak-SERS-active substrates. In this work, Ag and Pd thin films were deposited very efficiently and evenly onto the surface of glass substrates by using only corresponding metal nitrate salts (AgNO3 and Pd(NO3)2) with butylamine in ethanolic solutions. In this process, pure ethanol was used for Ag deposition, while an ethanol–water (8:2) mixture was used for Pd deposition. The as-prepared Ag and Pd films exhibited SERS activity over a large area. The surface-induced photoconversion capabilities of these Ag and Pd films were then tested on 4-nitrobenzenethiol by means of SERS. It was found that at least under visible laser irradiation, the surface-catalyzed photoreaction occurs more readily on a Ag film than on a Pd film for the conversion of 4-nitrobenzenethiol to 4-aminobenzenethiol, even though Pd is known to be an important transition metal with high catalytic activity. 相似文献
4.
Nitrile-butadiene rubber (NBR) was exposed to an accelerated thermal aging environment produced by an air-circulating oven for different time periods. NBR aging was evaluated by morphology, crosslink density, mechanical properties, chemical changes and thermal stability. The results showed that the surface damage of NBR turned severe and inhomogeneous, and the aging degree was most serious on the edge region of voids. Crosslinking reactions mainly occurred in the aging process. The tensile strength increased with increase in crosslink density up to a maximum value and thereafter decreased with further increase in crosslink density. X-ray Photoelectron Spectroscopy (XPS) and Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC/MS) analysis demonstrated that hydroxyl groups were formed and the additives migrated from inner to surface of NBR samples. In addition, the thermogravimetric analysis (TGA) indicated that the thermal stability of NBR did not significantly change in the accelerated thermal aging environment. 相似文献
5.
Elizabeth A. Lewis Christopher M. Stafford Bryan D. Vogt 《Journal of Polymer Science.Polymer Physics》2019,57(15):992-1000
The properties of thin supported polymer films can be dramatically impacted by the substrate upon which it resides. A simple way to alter the properties of the substrate (chemistry, rigidity, dynamics) is by coating it with an immiscible polymer. Here, we describe how ultrathin (ca. 2 nm) hydrophilic polymer layers of poly(acrylic acid) and poly(styrene sulfonate) (PSS) impact the aging behavior and the residual stress in thin films of poly(butylnorbornene‐ran‐hydroxyhexafluoroisopropyl norbornene) (BuNB‐r‐HFANB). The aging rate decreases as the film thickness (h) is decreased, but the extent of this change depends on the adjacent layer. Even for the thickest films (h > 500 nm), there is a decrease in the aging rate at 100 °C when BuNB‐r‐HFANB is in contact with PSS. In an effort to understand the origins of these differences in the aging behavior, the elastic modulus and residual stress (σR) in the films were determined by wrinkling as a function of aging time. The change in the elastic modulus during aging does not appear to be directly correlated with the densification or expansion of the films, but the aging rates appear to roughly scale as hσR1/3. These results illustrate that the physical aging of thin polymer films can be altered by adjacent polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 992–1000 相似文献
6.
Jessica M. Torres Christopher M. Stafford David Uhrig Bryan D. Vogt 《Journal of Polymer Science.Polymer Physics》2012,50(5):370-377
The modulus and glass transition temperature (Tg) of ultrathin films of polystyrene (PS) with different branching architectures are examined via surface wrinkling and the discontinuity in the thermal expansion as determined from spectroscopic ellipsometry, respectively. Branching of the PS is systematically varied using multifunctional monomers to create comb, centipede, and star architectures with similar molecular masses. The bulk‐like (thick film) Tg for these polymers is 103 ± 2 °C and independent of branching and all films thinner than 40 nm exhibit reductions in Tg. There are subtle differences between the architectures with reductions in Tg for linear (25 °C), centipede (40 °C), comb (9 °C), and 4 armed star (9 °C) PS for ≈ 5 nm films. Interestingly, the room temperature modulus of the thick films is dependent upon the chain architecture with the star and comb polymers being the most compliant (≈2 GPa) whereas the centipede PS is most rigid (≈4 GPa). The comb PS exhibits no thickness dependence in moduli, whereas all other PS architectures examined show a decrease in modulus as the film thickness is decreased below ~40 nm. We hypothesize that the chain conformation leads to the apparent susceptibility of the polymer to reductions in moduli in thin films. These results provide insight into potential origins for thickness dependent properties of polymer thin films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012 相似文献
7.
本文利用椭偏仪研究了成膜方式对不同分子量聚苯乙烯(PS)超薄膜玻璃化转变行为的影响.发现PS超薄膜的玻璃化转变温度(Tg)随着厚度降低的幅度与其成膜方式、分子量有关.当PS膜低于一定厚度时,旋涂法制备的PS膜的Tg比相同厚度浇铸法制备的膜低,且二者Tg差值随着厚度的降低而增大.这二种膜Tg的差值和Tg发生偏离时膜的临界厚度随聚苯乙烯分子量的增加而增加.利用非辐射能量转移荧光光谱证实成膜方式主要是影响PS分子链在膜中的构象.旋涂法制备的PS膜相对于本体在近表面区域分子链的形变更大.分子量愈大,分子运动时内摩擦阻力愈大,近表面区域分子的残余应力愈大.由于强运动能力的活性层(空气/PS界面)对PS薄膜Tg的影响占主导,相同厚度下分子链愈伸展,残余应力越大,PS薄膜的Tg越低,导致成膜方式与分子量的影响也愈大. 相似文献
8.
A. Moses Ezhil Raj V. Bena Jothy C. Ravidhas T. Som M. Jayachandran C. Sanjeeviraja 《Radiation Physics and Chemistry》2009,78(11):914-921
Energetic 1.5 MeV Li+ irradiation on MgO thin film surfaces for fluences 1013, 1014 and 1015 ions/cm2 led to radiation damage that altered the grain size from 29 to 9 nm and the internal stress. Optical absorption bands at 5.0, 3.49, 2.16 and 1.27 eV revealed, respectively, the presence of, oxygen vacancies, anion divacancies and trapped-hole centers. DC electrical conductivity of was increased by three orders of magnitude at room temperature as the fluence was increased to 1015 ions/cm2. 相似文献
9.
A.Z. Simões M.A. Ramírez A.H.M. Gonzalez C.S. Riccardi A. Ries E. Longo J.A. Varela 《Journal of solid state chemistry》2006,179(7):2206-2211
Ferroelectric CaBi4Ti4O15 (CBTi144) thin films were deposited on Pt/Ti/SiO2/Si substrates by the polymeric precursor method. The films present a single phase of layered-structured perovskite with polar axis orientation after annealing at 700 °C for 2 h in static air and oxygen atmosphere. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. It is noted that the films annealed in static air showed good polarization fatigue characteristics at least up to 1010 bipolar pulse cycles and excellent retention properties up to 104 s. On the other hand, oxygen atmosphere seems to be crucial in the decrease of both, fatigue and retention characteristics of the capacitors. Independently of the applied electric field, the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s. 相似文献
10.
Fang Sun David W. Grainger 《Journal of polymer science. Part A, Polymer chemistry》1993,31(7):1729-1740
Copolymers of 2-hydroxyethyl acrylate and 2-methoxyethyl acrylate with variable compositions were synthesized, fractionated, and characterized by 1H-NMR, IR, GPC, and viscometry. These copolymers were further modified via polymer analog esterification of copolymer hydroxy groups by a series of disulfide-containing carboxylic acids including lipoic acid and (n-pentyldithio) alkyl carboxylic acids (n-C5H11SS(CH2)m? COOH, m = 10, 15, 22) in the presence of 1,3-dicyclohexylcarbodiimide (DCC). Esterification reactions were quantitative for copolymers possessing hydroxy monomer contents ≤ 40% when excess acid and DCC were present for sufficiently long reaction times (2–4 days) at room temperature. Copolymer DSC analysis demonstrates a systematic variation of Tg with copolymer composition in good agreement with ideal mixing theory. These disulfide-bearing copolymers spontaneously yield two-dimensional ultrathin polymer films with side chain-dependent layer thicknesses of 20–45 Å by solution adsorption onto freshly deposited gold surfaces. Such ultrathin polymer films are expected to have diverse applications as bound polymeric surface modification reagents. © 1993 John Wiley & Sons, Inc. 相似文献
11.
Rare-earth (RE) doped Ba(Zr,Ti)O3 (BZT) thin films were prepared by rf-magnetron sputtering from a Ba0.90Ln0.067Zr0.09Ti0.91O3 (Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 °C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a 〈001〉 epitaxial crystal growth on Nb-doped SrTiO3, 〈001〉 and 〈011〉 growth on single-crystal Si, and a 〈111〉-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO3-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO6-octahedra distortion (M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system. 相似文献
12.
Vanadium(IV) oxide thin films on glass and silicon from the atmospheric pressure chemical vapour deposition reaction of VOCl3 and water 总被引:1,自引:0,他引:1
The dual source atmospheric pressure chemical vapour deposition (APCVD) reaction of VOCl3 and H2O was used to prepare thin films of vanadium oxides on glass and silicon substrates. The thin films were characterised by X-ray diffraction, Raman spectroscopy X-ray photoelectron spectroscopy and scanning electron microscopy. At reactor temperatures above 600 °C with a gas-phase excess of water over VOCl3, vanadium(IV) oxide thin films were produced which show a thermochromic transition temperature of 67 °C. The APCVD process is directly compatible with high throughput float-glass production enabling the use of a thin film of VO2 as an intelligent window coating. With reactor temperatures below 600 °C or with a gas-phase excess of VOCl3 over water, V2O5 thin films were produced. Vanadium(IV) oxide thin films could also be prepared on silicon substrates from the APCVD reaction of VOCl3 and H2O, which opens up further technological applications for the APCVD of VO2 thin films. 相似文献
13.
The influence of the vapors ofn-amyl orn-decyl alcohol on the stability of single thin liquid films, single bubbles, and foam columns was determined. It was found that the presence of surfactant vapors lowered the stability of foams and single foam films. The mechanism of the destabilizing action of the surfactant vapors on wet, dynamic foams under dynamic conditions is discussed. It is shown that the destabilizing action of the surfactant vapors is a further indication that surface elasticity forces are the main factor determining stability of wet, dynamic foams. 相似文献
14.
J. Araujo R. Ortíz A. López-Rivera J. M. Ortega M. Montilla D. Alarcón 《Journal of Solid State Electrochemistry》2007,11(3):407-412
The simultaneous electrodeposition of the system Cu–In–Se was investigated. The study was carried out at pH 8.5 using diethylentriamine
as complexing agent for the Cu+2 ion. The synthesis of CuInSe2 semiconductor thin films was carried out by electrodeposition on different substrates [indium–tin oxide (ITO) on glass, aluminum
and type 304 steel]. The simultaneous codeposition of the Cu, In, and Se was achieved by constant potential electrolysis technique
in aqueous solutions containing the elements that conform this material. The deposits of CuInSe2 were about 4 μm thick, which is thick enough for the photovoltaic effect to take place. The as-deposited films were characterized
by atomic emission spectroscopy with inductive coupling plasm (AES-ICP) and scanning electronic microscopy (SEM). Annealed
films were characterized X-ray diffraction, optical NIR spectroscopy, and photoelectrochemical studies The films were obtained
with a well-defined composition, very close to the expected one. Homogeneous deposit with chalcopyrite structure was produced.
A In2O3 phase was also observed. Annealing of the film improved the crystallinity of the films. Good photo response, an appropriate
absorption coefficient, and a band gap of 1.09 eV were obtained. 相似文献
15.
Carbon-based transparent thin films were prepared from the pyrolysis of silylated graphite oxide containing perfluoroalkyl groups. The saturated amount of n-hexadecylamine molecules which accommodated between the layers of silylated graphite oxide containing larger pefluoroalkyl groups was smaller than that observed for silylated graphite oxide without perfluoroalkyl groups. The resulting intercalation compounds were dispersed in a chloroform/cyclohexane solution and precursor thin films were obtained by a cast method. The sheet resistance of the obtained carbon-based films was about 5 times smaller than that of the films prepared from silylated graphite oxide prepared with the analogous hydrocarbon substituents. The spectroscopic measurements indicated that the number of defects within the carbon layers was larger, however, that of carbon atoms participating π-conjugating system was larger. This probably ascribed to the active fluorine species formed as the result of thermal decomposition of perfluoroalkyl groups. The latter was responsible for the lower sheet resistance of carbon-based thin films. 相似文献
16.
Min Sang Park Seokwon Jung So Jeong Heo Seung Geol Lee 《Journal of Polymer Science.Polymer Physics》2017,55(19):1470-1479
An optical film with high optical anisotropy was prepared by the stretching of a cellulose acetate film and the consequential orienting of a retardation‐enhancing additive. The change in retardation in response to moisture absorption was explored and it was found that the degree of the retardation variation is strongly related to the stretching temperature. Stress generated by the stretching and its relaxation was systematically investigated to elucidate the effect of stretching temperature on the irreversible change in retardation upon moisture absorption. The results show that the magnitude of releasable stress plays an important role in controlling changes in optical properties. In addition, the difference in the deformation behavior between glassy and rubbery states should be taken into account in the development of a moisture‐resistant optical film. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1470–1478 相似文献
17.
《Surface and interface analysis : SIA》2018,50(3):346-353
High quality copper oxide thin films were prepared by nebulizer spray pyrolysis technique using different concentrations of copper precursor solution. Concentration‐dependent structural, morphological, optical, and electrical properties of the prepared films are discussed. X‐ray diffraction studies done for the samples confirmed that the deposited films are in Cu2O phase with polycrystalline cubic structure. Atomic force microscopy analysis revealed that all the films are composed of nano sheet shaped grains covering the substrate surface. Optical studies done on the samples showed band gap values 2.42, 2.31, and 2.02 eV for the solution concentration 0.01, 0.05, and 0.1 M, respectively. Photoluminescence spectral analysis showed the emission band at 620 nm confirming the formation of cuprous oxide. Electrical analysis of the films showed p‐type conductivity with a low resistivity 2.19 × 102 Ω.cm and high carrier concentration 16.76 × 10 15 cm−3 for the molar concentration 0.1 M. In this work, Cu2O/ZnO heterojunctions were also prepared, and solar cell properties were studied; they were found to show increased open circuit voltage and short circuit current for higher copper concentration. 相似文献
18.
Ming Li Rugang Xie Changwei Hu Xin Wang Anmin Tian 《International journal of quantum chemistry》2000,78(4):245-251
The ab initio molecular orbital method is employed to study the structures and properties of chiral cyclic sulfur‐containing oxazaborolidine, as a catalyst, and its borane adducts. All the structures are optimized completely by means of the Hartree–Fock method at 6‐31g* basis sets. The catalyst is a twisted chair structure and reacts with borane to form four plausible catalyst–borane adducts. Borane–sulfur adducts may be formed, but they barely react with aromatic ketone to form catalyst–borane–ketone adducts, because they are repulsed greatly by the atoms arising from the chair rear of the catalyst with a twisted chair structure. Borane–N adduct has the largest formation energy and is predicted to react easily with aromatic ketone to form catalyst–borane–ketone adducts. The formation of the catalyst–borane adducts causes the BBH3 HBH3 bond lengths of the BH3 moiety to be increased and thus enhances the activity of the enantioselective catalytic reduction. The borane–N adduct is of great advantage to hydride transfer. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 245–251, 2000 相似文献
19.
Alireza Bahramian 《Surface and interface analysis : SIA》2013,45(11-12):1727-1736
Effects of the deposition process parameters on the thickness of TiO2 nanostructured film were simulated using the molecular dynamics (MD) approach and modeled by the artificial neural network (ANN) and regression method. Accordingly, TiO2 nanostructured film was prepared experimentally with the sol–gel dip‐coating method. Structural instabilities can be expected, due to short‐ and/or long‐range intermolecular forces, leading to the surface inhomogeneities. In the MD simulation, the Morse potential function was used for the inter‐atomic interactions, and equations of motion for atoms were solved by Verlet algorithm. The effect of the withdrawal velocity, drying temperature and number of deposited layers were studied in order to characterize the film thickness. The results of MD simulations are reasonably consistent with atomic force microscopy, scanning electron microscopy and Dektak surface profiler. Finally, the outputs from experimental data were analyzed by using the ANN in order to investigate the effects of deposition process parameters on the film thickness. In this case, various architectures have been checked using 75% of experimental data for training of the ANN. Among the various architectures, feed‐forward back‐propagation network with trainer training algorithm was found as the best architecture. Based on the R‐squared value, the ANN is better than the regression model in predicting the film thickness. The statistical analysis for those results was then used to verify the fitness of the complex process model. Based on the results, this modeling methodology can explain the characteristics of the TiO2 nanostructured thin film and growth mechanism varying with process conditions. © 2013 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. 相似文献
20.
Lead zirconate titanate (PZT) thin films were deposited on Pt/Ti/SiO2/Si and interlayer/Pt/Ti/SiO2/Si substrate by radio frequency (r.f.) magnetron sputtering with a Pb1.1Zr0.53Ti0.47O3 target. The crystallization of the PZT thin films was formed only by substrate temperature. When interlayer (PbO/TiO2) was inserted between the PZT thin film and the Pt electrode, the grain growth and processing temperature of the PZT thin films were considerably improved. Compared to PZT/Pt structure, the dielectric constant and polarization properties of the PZT/interlayer/Pt structure were fairly improved. In particular, PZT/interlayer/Pt at the substrate temperature of 400 °C showed prevalent ferroelectric properties (r=475.97, tanδ=0.0591, Pr=23 μC/cm2). As a result of an X-ray photoelectron spectroscopy (XPS) depth-profile analysis, it was found that PZT/interlayer/Pt deposited only by substrate temperature without the post-annealing process via r.f. magnetron sputtering method remained independent of each other regardless of substrate temperatures. 相似文献