首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dark reaction of NOx and H2O vapor in 1 atm of air was studied for the purpose of elucidating the recently discussed unknown radical source in smog chambers. Nitrous acid and nitric oxide were found to be formed by the reaction of NO2 and H2O in an evacuable and bakable smog chamber. No nitric acid was observed in the gas phase. The reaction is not stoichiometric and is thought to be a heterogeneous wall reaction. The reaction rate is first order with respect to NO2 and H2O, and the concentrations of HONO and NO initially increase linearly with time. The same reaction proceeds with a different rate constant in a quartz cell, and the reaction of NO2 and H218O gave H18ONO exclusively. Taking into consideration the heterogeneous reaction of NO2 and H2O, the upper limit of the rate constant of the third-order reaction NO + NO2 + H2O → 2HONO was deduced to be (3.0 ± 1.4) × 10?10 ppm?2-min?1, which is one order of magnitude smaller than the previously reported value. Nitrous acid formed by the heterogeneous dark reaction of NO2 and H2O should contribute significantly to both an initially present HONO and a continuous supply of OH radicals by photolysis in smog chamber experiments.  相似文献   

2.
The -ray induced decomposition of several inorganic nitrates CsNO3, TlNO3, Mg/NO3/2.6H2O, Ca/NO3/2.4H2O, Hg/NO3/2, Hg/NO3/2.2H2O, Pb/NO3/2 and Al/NO3/3.9H2O has been studied at an absorbed dose of {5 Mrads. G/NO 2 / is affected by the outer cation and depends mainly on its valency and ionic size. G/NO 2 / for hydrated mercuric nitrate is always higher as compared to that for the anhydrous mercuric nitrate at various doses. Water of crystallization might provide extra factors to facilitate the decomposition of the hydrated nitrate compared to that for the anhydrous salts. In most cases G/NO 2 / decreases exponentially with dose but in cases of CsNO3, Mg/NO3/2.6H2O and Al/NO3/3.9H2O it varies linearly.  相似文献   

3.
This work analyzed the thermal decomposition of ammonium nitrate (AN) in the liquid phase, using computations based on quantum mechanics to confirm the identity of the products observed in past experimental studies. During these ab initio calculations, the CBS‐QB3//ωB97XD/6–311++G(d,p) method was employed. It was found that one of the most reasonable reaction pathways is HNO3 + NH4+ → NH3NO2+ + H2O followed by NH3NO2+ + NO3 → NH2NO2 + HNO3. In the case in which HNO3 accumulates in the molten AN, alternate reactions producing NH2NO2 are HNO3 + HNO3 → N2O5 + H2O and subsequently N2O5 + NH4+ → NH2NO2 + H2O. In both scenarios, HNO3 plays the role of a catalyst and the overall reaction can be written as NH4+ + NO3 (AN) → NH2NO2 + H2O. Although the unimolecular decomposition of NH2NO2 is thermodynamically unfavorable, water and bases both promote the decomposition of this molecule to N2O and H2O. Thus AN thermal decomposition in the liquid phase can be summarized as NH4+ + NO3 (AN) → N2O + 2H2O.  相似文献   

4.
The compound [PbPh2(NO3)2(H2O)2] was synthesized and characterized by spectroscopic methods (IR; 1H, 13C and 207Pb NMR) and mass spectrometry. An X-ray diffraction study showed that the crystal is a supramolecular tridimensional network of hydrogen-bonded PbPh2(NO3)2(H2O)2 units in which the Pb atom is octacoordinated and adopts a distorted hexagonal bipyramidal geometry, with four O (bidentate nitrate) and two O (water) atoms in equatorial positions and two C-phenyl atoms in axial positions. The crystal of [PbMe3(NO3)(H2O)], obtained as a byproduct in the synthesis of PbMe2(NO3)2, contains chains of hydrogen-bonded PbMe3(NO3)(H2O) units in which the Pb atom is pentacoordinated with a slightly distorted trigonal bipyramidal environment. In this arrangement the three C-methyl atoms are equatorial and the O atoms from the monodentate nitrate and the water molecule are axial.  相似文献   

5.
At pH 2, the rate constant of hydrolysis of tris(tetraethylammonium) pentacyanoperoxynitritocobaltate(III) in H2O is 9.6×10−6 s−1. In the absence of any light, ONOO is not replaced by H2O and isomerizes within the coordination sphere to NO3. The novel complex [Co(CN)5NO3]3− released NO3 slowly, as detected by ion chromatography. At pH 6, no hydrolysis is observed. Direct photolysis, both at pH 2 and pH 6, of tris(tetraethylammonium) pentacyanoperoxynitritocobaltate(III) by irradiation (YAG laser) at 355 nm destroys the coordinated ONOO and releases NO2., which hydrolyzes to NO3 and NO2. We also measured the 59Co‐NMR spectra of [Co(CN)5OONO]3− and [Co(CN)5H2O]2−; the chemical shifts correspond very well to those predicted and are in agreement with the expected contribution to the ligand field by H2O and ONOO.  相似文献   

6.
Raman spectra of the liquid systems Be(NO3)2 · 20H2O, Be(NO3)2 · 4H2O, Al(NO3)3·20H2O, and Al(NO3)3 · 9H2O have been recorded. The spectra are analysed in terms of vibrational modes arising from water, the nitrate ion, the aquated metal ions and hydrolysis products. For the concentrated beryllium system, though not for the aluminium system, the spectra suggest a significant degree of proton transfer from [Be(OH2)4]2+ to NO3?. Solvent-separated metal-nitrate ion pairs appear to be present in all the systems studied.  相似文献   

7.
Four macrocyclic Schiff-base cobalt complexes, [CoL1][NO3]2 · 3H2O, [CoL2][NO3]2 · 4H2O, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O, were synthesized by reaction of salicylaldehyde derivatives with 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane and Co(NO3)2 · 6H2O by template effect in methanol. The metals to ligand ratio of the complexes were found to be 1:1. The Co(II) complexes are proposed to be tetrahedral geometry. The macrocyclic Co(II) complexes are 1:2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3 M. The structure of Co(II) complexes is proposed from elemental analysis, Ft-IR, UV–visible spectra, magnetic susceptibility, molar conductivity measurements and mass spectra. Electrochemical and thin-layer spectroelectrochemical studies of the complexes were comparatively studied in the same experimental conditions. The electrochemical results revealed that all complexes displayed irreversible one reduction processes and their cathodic peak potential values (E pc) were observed in around of ?1.14 to 0.95 V. It was also seen that [CoL1][NO3]2 · 3H2O and [CoL2][NO3]2 · 4H2O exhibited one cathodic wave without corresponding anodic wave but, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O showed one cathodic wave with corresponding anodic wave, probably due to the presence of different ligand nature even if the complexes have the same N2O2 donor set. In view of spectroelectrochemical studies [CoL3][NO3]2 · 4H2O showed distinctive spectral changes in which the intensity of the band (λ = at 316 nm, assigned to n → π* transitions) decreased and a new broad band in a low intensity about 391 nm appeared as a result of the reduction process based on the cobalt center in the complex.  相似文献   

8.
Gamma-ray induced decomposition of some divalent nitrates, viz. Mg(NO3)2·6H2O, Ca(NO3)2·4H2O, Sr(NO3)2, Ba(NO3)2, Zn(NO3)2·6H2O, Cd(NO3)2·4H2O, Hg(NO3)2·2H2O, Mn(NO3)2·4H2O, Cu(NO3)2·3H2O and trivalent nitrates, viz. Al(NO3)3·9H2O, Fe(NO3)3·9H2O, Cr(NO3)3·9H2O, Y(NO3)3·6H2O, In(NO3)3·3H2O, La(NO3)3·6H2O, Ce(NO3)3·6H2O, Pr(NO3)3·6H2O, Bi(NO3)3·5H2O has been studied in solid state at room temperature. G(NO 2 ) values (after applying appropriate dose correction) have been found to vary in the range 0.12–3.16 and 0.069–2.15 for divalent and trivalent nitrates respectively. G'-values were calculated by dividing G by the ratio of number of electrons in nitrate ion to the total number of electrons in the nitrate salt. Cation size, its polarizing power, available free space in the crystal lattice and the number and location of water molecules seem to play a dominant role in radiolytic decomposition. For Zn, Sr, In, La and Ce nitrates dose variation studies have been carried out.  相似文献   

9.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

10.
采用等温溶解平衡法研究了五元体系Na, K, Mg2+//Cl, NO3-H2O在298.16 K、氯化钠饱和时各盐的溶解度和饱和溶液的物化性质(密度, 电导率)以及四元体系Na, Mg2+//Cl, NO3-H2O的相平衡关系. 研究表明: 在298.16 K, 氯化钠饱和时该五元体系溶解度相图由六个结晶区、九条单变量溶解度曲线和四个零变量点构成, 六个结晶区分别对应于NaNO3+NaCl, KNO3+NaCl, KCl+NaCl, Mg(NO3)2•6H2O+NaCl, MgCl2•6H2O+NaCl和复盐KCl•MgCl2•6H2O+NaCl; 在298.16 K时, 该四元体系的相图由四个结晶区、五条单变量溶解度曲线和二个零变量点构成, 四个结晶区分别对应于NaNO3, NaCl, Mg(NO3)2•6H2O, MgCl2•6H2O.  相似文献   

11.
We have carried out laboratory measurements of gas-phase ion-molecule-reactions of several negative ion species with propionic, butyric, glyoxylic, pyruvic, and pinonic acids. A flow reactor operating at a temperature of 293 ± 3 K and total gas pressures of 1.5 hPa, 9 hPa, or 40 hPa were used. The negative reagent ion species investigated included CO3, CO3H2O, NO3, NO3H2O, NO2, NO2H2O, and O3. The reactions were found to proceed either via proton transfer, switching, or clustering. A new proton transfer channel leading to alkylperoxy carboxylate radicals (R−H(OO·)COO) was observed for propionic, butyric, and pinonic acids.  相似文献   

12.
The Chloride Nitrate PrCl2(NO3) · 5 H2O with Cationic and Anionic Complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4] Green single crystals of PrCl2(NO3) · 5 H2O have been obtained from an aqueous solution of PrCl3 and Pr(NO3)3. The crystal structure [monoclinic, P2/c, Z = 4, a = 1228.8(3), b = 648.4(1), c = 1266.0(4) pm, β = 91.91(3)°] contains cationic and anionic Pr3+ complexes according to [PrCl2(H2O)6][PrCl2(NO3)2(H2O)4]. Both nitrate groups of the anionic complex act as bidentate chelating ligands. Hydrogen bonds are observed with water molecules as donors and chlorine as well as oxygen atoms as acceptors.  相似文献   

13.
Crystals of the title compounds were grown from their hydrous melts or solutions. The crystal structure of iron(III) trinitrate hexahydrate {hexaaquairon(III) trinitrate, [Fe(H2O)6](NO3)3} is built up from [Fe(H2O)6]2+ octahedra and nitrate anions connected via hydrogen bonds. In iron(III) trinitrate pentahydrate {pentaaquanitratoiron(III) dinitrate, [Fe(NO3)(H2O)5](NO3)2}, one water molecule in the coordination octahedron of the FeIII atom is substituted by an O atom of a nitrate group. Iron(III) trinitrate tetrahydrate {triaquadinitratoiron(III) nitrate monohydrate, [Fe(NO3)2(H2O)3]NO3·H2O} represents the first example of a simple iron(III) nitrate with pentagonal–bipyramidal coordination geometry, where two bidentate nitrate anions and one water molecule form a pentagonal plane.  相似文献   

14.
1,6-Bis(2-formylphenyl) hexane (I) was derived from 1,6-dibromohexane with salicylaldehyde and K2CO3 and the ligand (L) was derived from compound I and 2,6-diaminopyridine. Then, the Cu(II), Ni(II), Pb(II), Zn(II), Cd(II), and La(III) complexes with L were synthesized by the reaction of this ligand and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Zn(NO3)2 · 6H2O, Cd(NO3)2 · 6H2O, and La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H and 13C NMR, UV-Vis spectra, magnetic susceptibility, conductivity measurements, and mass spectra. All complexes are diamagnetic and the Cu(II) complex is binuclear. The article is published in the original.  相似文献   

15.
The complexes [Dy(NO3)3(Bipy)2], (HBipy)[Gd(NO3)4(Bipy)], and [FeIII(Me2Bipy)3][La(NO3)5(H2O)]NO3 and the precursor of the latter, [FeIIPc2(Me2Bipy)](CHCl3) · 1.5H2O (where Bipy is the 2,2′-bipyridyl, Me2Bipy is the 4,4′-dimethyl-2,2′-bipyridyl, and Pc? is the pyridine-2-carboxylate anion), were obtained and characterized by X-ray diffraction analysis. Depending on the conditions of the synthesis and the reagents, the number of coordinated nitrate groups in the lanthanide complex increases from three to five: [Dy(NO3)3(Bipy)2], [Gd(NO3)4(Bipy)]?, and [La(NO3)5(H2O)]2?.  相似文献   

16.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

17.
The coordination capability of a pendant-arm azamacrocyclic ligand L with four ethyldioxolane pendant groups towards transition, post-transition and lanthanide metal ions was achieved. In all cases, complexes with a 2:1 metal:ligand molar ratio were obtained. The complexes were characterized by elemental analysis, MS-FAB, IR, conductivity measurements, 1H and 13C NMR spectroscopy. Crystal structures of [CoL][CoBr0.5(NO3)3.5] and [(H2O)H2L][Nd(NO3)4(H2O)3]NO3·3.5H2O have been determined. The [CoL]2+ cation contains the Co(II) ion endomacrocyclicly coordinated in a distorted octahedral geometry with a N6 core. The Nd(III) complex presents a mononuclear exomacrocyclic structure with an 11 coordination environment. π,π-Stacking interactions have been observed between the pyridine rings of the protonated ligand [(H2O)H2L]2+, and the [Nd(NO3)4(H2O)3]2− anion.  相似文献   

18.
A multicomponent pharmaceutical salt formed by the isoquinoline alkaloid berberine (5,6‐dihydro‐9,10‐dimethoxybenzo[g]‐1,3‐benzodioxolo[5,6‐a]quinolizinium, BBR) and the nonsteroidal anti‐inflammatory drug diclofenac {2‐[2‐(2,6‐dichloroanilino)phenyl]acetic acid, DIC} was discovered. Five solvates of the pharmaceutical salt form were obtained by solid‐form screening. These five multicomponent solvates are the dihydrate (BBR–DIC·2H2O or C20H18NO4+·C14H10Cl2NO2?·2H2O), the dichloromethane hemisolvate dihydrate (BBR–DIC·0.5CH2Cl2·2H2O or C20H18NO4+·C14H10Cl2NO2?·0.5CH2Cl2·2H2O), the ethanol monosolvate (BBR–DIC·C2H5OH or C20H18NO4+·C14H10Cl2NO2?·C2H5OH), the methanol monosolvate (BBR–DIC·CH3OH or C20H18NO4+·C14H10Cl2NO2?·CH3OH) and the methanol disolvate (BBR–DIC·2CH3OH or C20H18NO4+·C14H10Cl2NO2?·2CH3OH), and their crystal structures were determined. All five solvates of BBR–DIC (1:1 molar ratio) were crystallized from different organic solvents. Solvent molecules in a pharmaceutical salt are essential components for the formation of crystalline structures and stabilization of the crystal lattices. These solvates have strong intermolecular O…H hydrogen bonds between the DIC anions and solvent molecules. The intermolecular hydrogen‐bond interactions were visualized by two‐dimensional fingerprint plots. All the multicomponent solvates contained intramolecular N—H…O hydrogen bonds. Various π–π interactions dominate the packing structures of the solvates.  相似文献   

19.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:19,20-tribenzo-9,12,15,18-tetraoxacyclounkosa-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane and Cu(NO3)2· 3H2O, Ni(NO3)2· 6H2O, Pb(NO3)2, Co(NO3)2· 6H2O, La(NO3)3·6H2O respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, u.v–vis spectra, magnetic susceptibility, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoIII complex was oxidized to CoIII.  相似文献   

20.
The solid-state coordination reaction: Nd(NO3)3·6H2O(s)+4Ala(s) → Nd(Ala)4(NO3)3·H2O(s)+5H2O(l) and Er(NO3)3·6H2O(s)+4Ala(s) → Er(Ala)4(NO3)3·H2O(s)+5H2O(l) have been studied by classical solution calorimetry. The molar dissolution enthalpies of the reactants and the products in 2 mol L–1 HCl solvent of these two solid-solid coordination reactions have been measured using a calorimeter. From the results and other auxiliary quantities, the standard molar formation enthalpies of [Nd(Ala)4(NO3)3·H2O, s, 298.2 K] and[Er(Ala)4(NO3)3·H2O, s,298.2 K] at 298.2 K have been determined to be Δf H m 0 [Nd(Ala)4(NO3)3·H2O,s, 298.2 K]=–3867.2 kJ mol–1, and Δf H m 0 [Er(Ala)4(NO3)3·H2O, s, 298.2 K]=–3821.5 kJ mol–1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号