首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two methods of incorporating functional groups rich in nitrogen into low cost microporous hypercrosslinked polymers (HCPs) have been evaluated and the effects on the carbon dioxide CO2/N2 IAST selectivity were measured. Electrostatic incorporation of an ammonium salt into a sulfonic acid-containing HCP polymer afforded a static CO2 uptake of 2.5 mmol g−1 with a CO2/N2 IAST selectivity of 42:1 at 1 bar and 298 K. Using column breakthrough measurements with a 15:85 CO2/N2 mixture at 298 K and 1 bar, a selectivity of 17:1 was obtained. However, varying the counterion resulted in polymers with lower CO2/N2 selectivity values. Decoration of the parent polymer with CO2-philic imidazole followed by electrostatic ammonium salt incorporation blocked some of the micropores reducing the selectivity which re-emphasizes the role and importance of pore width for CO2/N2 selectivity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2513–2521  相似文献   

3.
Novel types of microporous material are required for chemoselective adsorptions, separations and heterogeneous catalysis. This concept article describes recent research directed towards the synthesis of polymeric materials that possess microporosity that is intrinsic to their molecular structures. These polymers (PIMs) can exhibit analogous behaviour to that of conventional microporous materials, but, in addition, may be processed into convenient forms for use as membranes. The excellent performance of these membranes for gas separation and pervaporation illustrates the unique character of PIMs and suggests immediate technological applications.  相似文献   

4.
Shape-persistent contorted ladder polymers are an intriguing and unusual class of polymers. Using catalytic arene-norbornene annulation (CANAL) polymerization and with norbornadiene and dibromoarenes as monomers, we synthesized a series of ladder polymers with fused norbornyl benzocyclobutene backbones and varied conformations. A diaryl spiro-orthocarbonate monomer was used to reorient the ladder backbone perpendicularly to induce three-dimensional kinks, and a p-dibromo-xylene comonomer was used to statistically vary the distance between the spirocyclic kinks in the ladder backbone. Norbornyl benzocyclobutene ladder polymers with no spirocyclic backbone twists possess much more compact conformations than ladder polymers with frequent spirocyclic backbone twists in solution. While spirocyclic twists in the polymer backbone had minor effects on the surface area and microporosity, incorporation of rotatable single bonds in the repeat unit significantly decreased both the surface area and pore volume. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3075–3081  相似文献   

5.
6.
张成江  潘加亮  张卓旻  李攻科 《色谱》2014,32(10):1034-1042
微孔有机聚合物(microporous organic polymers,MOPs)是一类由轻元素组成的新型多孔材料,具有骨架密度低、比表面积大、孔尺寸可调控、表面可修饰、化学和物理性质稳定等优点。近年来,MOPs在样品前处理领域展现出巨大的应用潜力。本文综述了MOPs的结构类型及合成方法,以及MOPs在固相萃取、批处理吸附萃取、整体柱和传感膜等样品前处理技术中的应用。  相似文献   

7.
8.
选取溴代噻唑和三乙炔基苯为单体,利用聚合反应自下而上构建含噻唑共轭微孔聚合物(NSCMP),通过热解和KOH活化热解NSCMP制备了氮、硫杂原子硬炭(NSHC)和活化NSHC(KNSHC)。利用扫描电子显微镜、能量色散谱、氮气吸附-脱附和恒流充放电等表征2个样品的结构与电化学性能。研究表明KNSHC中N和S的质量分数分别为10.42%和2.23%,KNSHC比表面积高达2 140 m2·g-1。在0.2 A·g-1电流密度下循环500次后KNSHC和NSHC的可逆比容量分别为946.2和493.7 mAh·g-1。KNSHC的优异电化学性能归因于其独特的孔结构和氮、硫杂原子的协同作用。  相似文献   

9.
Two kinds of novel organic microporous polymers TCP s ( TCP‐A and TCP‐B ) were prepared by two cost‐effective synthetic strategies from the monomer of tricarbazolyltriptycene ( TCT ). Their structure and properties were characterized by FT‐IR, solid 13C NMR, powder XRD, SEM, TEM, and gas absorption measurements. TCP‐B displayed a high surface area (1469 m2 g?1) and excellent H2 storage (1.70 wt % at 1 bar/77 K) and CO2 uptake abilities (16.1 wt % at 1 bar/273 K), which makes it a promising material for potential application in gas storage.  相似文献   

10.
11.
Metal-organic frameworks constructed by self-assembly of metal ions and organic linkers have recently been of great interest in the preparation of porous hybrid materials with a wide variety of functions. Despite much research in this area and the large choice of building blocks used to fine-tune pore size and structure, it remains a challenge to synthesise frameworks composed of polyamines to tailor the porosity and adsorption properties for CO(2). Herein, we describe a rigid and microporous three-dimensional metal-organic framework with the formula [Zn(2)(L)(H(2)O)]Cl (L=1,4,7-tris(4-carboxybenzyl)-1,4,7-triazacyclononane) synthesised in a one-pot solvothermal reaction between zinc ions and a flexible cyclic polyaminocarboxylate. We have demonstrated, for the first time, that a porous rigid framework can be obtained by starting from a flexible amine building block. Sorption measurements revealed that the material exhibited a high surface area (135 m(2) g(-1)) and was the best compromise between capacity and selectivity for CO(2) over CO, CH(4), N(2) and O(2); as such it is a promising new selective adsorbent for CO(2) capture.  相似文献   

12.
Polymer networks, which are materials composed of many smaller components—referred to as “junctions” and “strands”—connected together via covalent or non‐covalent/supramolecular interactions, are arguably the most versatile, widely studied, broadly used, and important materials known. From the first commercial polymers through the plastics revolution of the 20th century to today, there are almost no aspects of modern life that are not impacted by polymer networks. Nevertheless, there are still many challenges that must be addressed to enable a complete understanding of these materials and facilitate their development for emerging applications ranging from sustainability and energy harvesting/storage to tissue engineering and additive manufacturing. Here, we provide a unifying overview of the fundamentals of polymer network synthesis, structure, and properties, tying together recent trends in the field that are not always associated with classical polymer networks, such as the advent of crystalline “framework” materials. We also highlight recent advances in using molecular design and control of topology to showcase how a deep understanding of structure–property relationships can lead to advanced networks with exceptional properties.  相似文献   

13.
A family of azo‐bridged covalent organic polymers (azo‐COPs) was synthesized through a catalyst‐free direct coupling of aromatic nitro and amine compounds under basic conditions. The azo‐COPs formed 3D nanoporous networks and exhibited surface areas up to 729.6 m2 g?1, with a CO2‐uptake capacity as high as 2.55 mmol g?1 at 273 K and 1 bar. Azo‐COPs showed remarkable CO2/N2 selectivities (95.6–165.2) at 298 K and 1 bar. Unlike any other porous material, CO2/N2 selectivities of azo‐COPs increase with rising temperature. It was found that azo‐COPs show less than expected affinity towards N2 gas, thus making the framework “N2‐phobic”, in relative terms. Our theoretical simulations indicate that the origin of this unusual behavior is associated with the larger entropic loss of N2 gas molecules upon their interaction with azo‐groups. The effect of fused aromatic rings on the CO2/N2 selectivity in azo‐COPs is also demonstrated. Increasing the π‐surface area resulted in an increase in the CO2‐philic nature of the framework, thus allowing us to reach a CO2/N2 selectivity value of 307.7 at 323 K and 1 bar, which is the highest value reported to date. Hence, it is possible to combine the concepts of “CO2‐philicity” and “N2‐phobicity” for efficient CO2 capture and separation. Isosteric heats of CO2 adsorption for azo‐COPs range from 24.8–32.1 kJ mol?1 at ambient pressure. Azo‐COPs are stable up to 350 °C in air and boiling water for a week. A promising cis/trans isomerization of azo‐COPs for switchable porosity is also demonstrated, making way for a gated CO2 uptake.  相似文献   

14.
Metal-organic frameworks (MOFs), {[Cu(2)(bdcppi)(dmf)(2)]·10DMF·2H(2)O}(n) (SNU-50) and {[Zn(2)(bdcppi)(dmf)(3)]·6DMF·4H(2)O}(n) (SNU-51), have been prepared by the solvothermal reactions of N,N'-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H(4)BDCPPI) with Cu(NO(3))(2) and Zn(NO(3))(2), respectively. Framework SNU-50 has an NbO-type net structure, whereas SNU-51 has a PtS-type net structure. Desolvated solid [Cu(2)(bdcppi)](n) (SNU-50'), which was prepared by guest exchange of SNU-50 with acetone followed by evacuation at 170 °C, adsorbs high amounts of N(2), H(2), O(2), CO(2), and CH(4) gases due to the presence of a vacant coordination site at every metal ion, and to the presence of imide groups in the ligand. The Langmuir surface area is 2450 m(2) g(-1). It adsorbs H(2) gas up to 2.10 wt% at 1 atm and 77 K, with zero coverage isosteric heat of 7.1 kJ mol(-1), up to a total of 7.85 wt% at 77 K and 60 bar. Its CO(2) and CH(4) adsorption capacities at 298 K are 77 wt% at 55 bar and 17 wt% at 60 bar, respectively. Of particular note is the O(2) adsorption capacity of SNU-50' (118 wt% at 77 K and 0.2 atm), which is the highest reported so far for any MOF. By metal-ion exchange of SNU-51 with Cu(II), {[Cu(2)(bdcppi)(dmf)(3)]·7DMF·5H(2)O}(n) (SNU-51-Cu(DMF)) with a PtS-type net was prepared, which could not be synthesized by a direct solvothermal reaction.  相似文献   

15.
Herein we report the mechanochemical Friedel-Crafts alkylation of 1,3,5-triphenylbenzene (TPB) with two organochloride cross-linking agents, dichloromethane (DCM) and chloroform (CHCl3), respectively. During a thorough milling parameter evaluation, the DCM-linked polymers were found to be flexible and extremely sensitive toward parameter changes, which even enables the synthesis of a polymer with a SSABET of 1670 m2/g, on par with the solution-based reference. Contrary, CHCl3-linked polymers are exhibiting a rigid structure, with a high porosity that is widely unaffected by parameter changes. As a result, a polymer with a SSABET of 1280 m2/g could be generated in as little as 30 minutes, outperforming the reported literature analogue in terms of synthesis time and SSABET. To underline the environmental benefits of our fast and solvent-free synthesis approach, the green metrics are discussed, revealing an enhancement of the mass intensity, mass productivity and the E-factor, as well as of synthesis time and the work-up in comparison to the classical synthesis. Therefore, the mechanochemical polymerization is presented as a versatile tool, enabling the generation of highly porous polymers within short reaction times, with a minimal use of chlorinated cross-linker and with the possibility of a post polymerization modification.  相似文献   

16.
17.
A novel metal‐doping strategy was developed for the construction of iron‐decorated microporous aromatic polymers with high small‐gas‐uptake capacities. Cost‐effective ferrocene‐functionalized microporous aromatic polymers (FMAPs) were constructed by a one‐step Friedel–Crafts reaction of ferrocene and s‐triazine monomers. The introduction of ferrocene endows the microporous polymers with a regular and homogenous dispersion of iron, which avoids the slow reunion that is usually encountered in previously reported metal‐doping procedures, permitting a strong interaction between the porous solid and guest gases. Compared to ferrocene‐free analogues, FMAP‐1, which has a moderate BET surface area, shows good gas‐adsorption capabilities for H2 (1.75 wt % at 77 K/1.0 bar), CH4 (5.5 wt % at 298 K/25.0 bar), and CO2 (16.9 wt % at 273 K/1.0 bar), as well as a remarkably high ideal adsorbed solution theory CO2/N2 selectivity (107 v/v at 273 K/(0–1.0) bar), and high isosteric heats of adsorption of H2 (16.9 kJ mol?1) and CO2 (41.6 kJ mol?1).  相似文献   

18.
微孔配位聚合物作为新型储氢材料的研究   总被引:6,自引:0,他引:6  
杨勇  沈泓滢  邢航  潘毅  白俊峰 《化学进展》2006,18(5):648-656
微孔配位聚合物性质独特、结构多样,具有广泛的应用前景,它已成为近几年来一个热门的研究领域。本文简要介绍该类化合物作为一种新型的储氢材料,在合成、结构和储氢性能方面的研究进展。  相似文献   

19.
Functional‐group‐oriented polymerization strategies have contributed significantly to the initial development of porous polymers and have led to the utilization of several well‐known organic transformations in the synthesis of these polymers. Because there are multiple polymerization routes that can be used to introduce the same chemical functionality, it is very important to demonstrate the effect of different polymerization routes on the gas‐sorption properties of these chemically similar polymers. Herein, we have studied the rich chemistry of azobenzenes and synthesized four chemically similar nanoporous azobenzene polymers (NABs) with surface areas of up to 1021 m2 g?1. The polymerization routes have a significant impact on the pore‐size distributions of the NABs, which directly affects the temperature dependence of the CO2/N2 selectivity. A pore‐width maximum of 6–8 Å, narrow pore‐size distribution, and small particle size (20–30 nm) were very critical for high CO2/N2 selectivity and N2 phobicity, which is associated with azo linkages and realized at warm temperatures. Our findings collectively suggest that an investigation of different polymerization routes for the same chemical functionalization is critical to understand fully the combined effect of textural properties, local environment, and chemical functionalization on the gas‐sorption properties of nanoporous polymers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号