首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以KOH为致孔剂,制备了竹基微孔多孔碳材料(PCM);将PCM与聚磷酸铵(APP)添加于环氧树脂(EP),研究了PCM协同APP阻燃EP复合材料的作用及机理.BET吸附、扫描电子显微镜(SEM)及X射线光电子能谱(XPS)分析显示,PCM6的比表面积、孔容、孔径分别为2063 m2/g、0.9 cm2/g、1.8 nm;粒径为1~5μm;表面存在C—C,C—O—,C O及COO—等活性基团.极限氧指数(LOI)、UL 94垂直燃烧及锥形量热仪(Cone)研究表明,0.8 wt%的PCM6与3.1 wt%的APP复合可使EP复合材料的LOI由24.6%提高到27.3%,热释放速率峰值降低45.4%,PCM6表现出良好的协同阻燃作用.热失重分析及XPS研究表明,PCM6提高了阻燃EP复合材料的热稳定性,催化APP释放NH3、H2O,加快了交联成炭的速度及热解产物焦磷酸(酯)的形成,由此揭示了PCM协同APP阻燃EP的作用机理.  相似文献   

2.
将制备的4种植物基多孔碳,甘蔗渣炭(SBC)、竹叶炭(BLC)、稻壳炭(RHC)及竹茎炭(BSC),以及购置的椰壳炭(CSC)、果壳炭(NSC)、碳纳米管(CNTs)及可膨胀石墨(EG)分别与聚磷酸铵(APP)复合用于阻燃环氧树脂(EP),研究了碳材料比表面积、表面活性及微观形貌对APP阻燃EP燃烧和热解行为的影响.物理吸附仪、X射线光电子能谱仪(XPS)、扫描电镜研究指出,颗粒状竹茎多孔碳(BSC)的比表面积(2063m2/g)及表面活性基团C—O—、C≡O及COO—的比例显著大于其他碳材料;各种碳材料均以微米级尺度分布于阻燃EP基体.氧指数(LOI)、UL 94垂直燃烧及锥形量热仪研究表明,0.8 wt%BSC或CNTs与3.1 wt%APP协同阻燃EP的LOI分别由EP的24.6%提高到27.3%和27.6%,UL 94均为V-1级,峰值热释放速率分别比EP/APP降低了27%和28%.碳材料的协同阻燃效果主要取决于微观形貌;对于颗粒状多孔碳,其比表面积、O/C比及表面活性基团比例越大,协同阻燃效果越好.热失重分析、共聚焦拉曼光谱及XPS研究证实,碳材料提高了EP/APP复合材料的初始分解温度和残炭量;大的比表面及表面活性,以及管状形貌能够提高环氧树脂复合材料高温残炭量、促进残炭类石墨化转变、改善残炭耐高温氧化性能.  相似文献   

3.
将改性后的海泡石添加到聚磷酸铵(APP)和双季戊四醇(DPER)膨胀阻燃聚丙烯(PP/IFR)体系中,采用氧指数(LOI)、热重分析(TGA)、光电子能谱(XPS)、傅里叶变换红外(FTIR)光谱、锥形量热仪(CONE)和扫描电镜(SEM)考察其对膨胀阻燃体系的催化协效作用,探讨作用机理.LOI结果表明,改性的海泡石比纳米水滑石和有机改性的蒙脱土有更好的催化协效作用.CONE数据证实,海泡石可以降低膨胀阻燃聚丙烯体系的热释放速率和总的热释放量.通过观察SEM图片发现,海泡石可以改善膨胀炭层的形貌,提高炭层的隔热隔质性能.TGA结果表明,在氮气和空气气氛下,海泡石均可以提高膨胀炭层的热稳定性,增加高温时残余物的量,其主要作用对象为APP.FTIR和XPS测试发现加热过程中海泡石可以与APP发生化学反应,形成P—O—Si键,增加了APP高温时的稳定性.  相似文献   

4.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

5.
利用锥形量热仪(CONE)和热重分析(TGA),并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对核(PSt/OMMT)-壳(PBA)结构纳米复合粒子(CSN)填充聚丙烯(PP)-乙烯-醋酸乙烯酯共聚物(EVA)复合材料及加入无卤复配阻燃剂制备的PP-EVA/CSN/聚磷酸铵(APP)/层状氢氧化镁铝(LDH)复合阻燃材料的阻燃性能及热降解行为进行了研究。结果表明,添加10%(wt)CSN可以提高PP-EVA复合材料的阻燃性能,且PP-EVA复合体系燃烧时的热释放速率、有效燃烧热减少,热稳定性增强。CSN与APP/LDH产生阻燃协同作用,使复合阻燃材料的阻燃性能、热稳定性能进一步提高。  相似文献   

6.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、五硫化二磷(P2S5)为原料合成9,10-二氢-9-氧杂-10-磷杂菲-10-硫化物(DOPS),并将DOPS与聚磷酸铵(APP)组成复合阻燃剂,用于环氧树脂(EP)的阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法对改性后的环氧树脂的阻燃性能和阻燃机理进行了测试和分析.实验结果表明,DOPS/APP阻燃体系对EP具有很好的阻燃性能,且复配阻燃剂的阻燃效果比单一的阻燃剂阻燃效果好;其中,当阻燃剂的总添加量达到30%时即W_(DOPS)=10%、W_(APP)=20%时,阻燃EP复合材料的LOI值可达到29.2%,垂直燃烧等级达到UL-94 V-0级,残炭量可达49.3%.  相似文献   

7.
采用高碘酸钠对棉织物表面进行选择性氧化生成醛基,选取乙二胺与醛基反应,通过膦氢化加成反应将阻燃剂亚磷酸二甲酯接枝到棉织物表面,最后通过三羟甲基三聚氰胺对棉织物表面进行接枝改性,制备了含三羟甲基三聚氰胺/乙二胺/亚磷酸二甲酯阻燃棉织物.通过傅里叶红外光谱(FTIR)对改性后棉织物的结构进行了表征,通过极限氧指数(LOI)测试研究了其阻燃性能,通过锥形量热测试研究了其燃烧行为,通过在40℃皂水中洗涤10次考察了其耐水性能,通过扫描电子显微镜测试了其表面及燃烧后炭层的形貌.研究结果表明,经表面改性后,棉织物的LOI值由(19.5±1.0)%提高到了(43.1±1.0)%,经耐水洗测试后,LOI值仅下降至(42.6±1.0)%,保持了非常好的阻燃性能,表明通过表面接枝方法制备的三羟甲基三聚氰胺/乙二胺/亚磷酸二甲酯阻燃棉织物具有非常好的耐水洗性能.表面阻燃改性提高了棉织物在燃烧过程中的成炭性能,形成的连续膨胀的炭层较好地保护了内部织物,抑制了织物的降解和燃烧,从而提高了棉织物的阻燃性能.  相似文献   

8.
本研究以次磷酸铝(AP)为阻燃剂,探讨了其对聚丙烯/木粉复合材料(WPC)的阻燃性能的影响,并阐明了相关的阻燃机理。实验结果证明,当AP的添加量为30 wt%时,可以使木粉含量为30 wt%的WPC通过垂直燃烧V-0级,氧指数达到25. 0%。锥形量热测试结果表明:AP的加入能够有效抑制复合材料的燃烧,30wt%AP的加入能够使木粉含量为30 wt%的WPC的热释放峰值(PHRR)降低至240 k W/m~2,与不含阻燃剂的WPC相比降低了50%;燃烧后所得的残炭的质量高达45. 2%。扫描电子显微镜(SEM),热重-红外联用(TGFTIR)和X射线光电子能谱结果表明:添加AP后,燃烧过程中WPC/AP的气相产物中会有水、二氧化碳及含PO_2-结构的物质等生成,从而赋予WPC/AP气相阻燃作用;此外,WPC/AP在燃烧中能够热解生成内外结构不同的炭层,内部炭层主要为含铝为主的交联稳定炭层,而外部炭层主要含有交联P-O-C结构等,因此,AP能够同时通过气相和凝聚相的双重作用实现WPC的高效阻燃。  相似文献   

9.
采用有机蒙脱土(OMMT)和碳酸镍(NC)为阻燃协效剂,与膨胀型阻燃剂(IFR)三元体系协同阻燃线性低密度聚乙烯(LLDPE).采用热重分析(TGA)、氧指数(LOI)测试、UL-94燃烧测试和锥形量热测试(CONE)研究了LLDPE阻燃体系的热稳定性和燃烧性能;采用红外光谱分析(FT-IR)、数码相机和扫描电子显微镜(SEM)对燃烧残余物的结构和形貌进行了分析.结果表明:固定mnLLDPE/mIFR=7/3,当moMMT/m(LLDPE+IFR)=0.04时,阻燃体系的LOI为31.5%,通过UL-94 V-0级测试,LLDPE-IFR-OMMT的残炭率为15.09%,最大热释放速率(PHRR)相比于纯LLDPE降低了50%;向LLDPE-IFR-OMMT体系中添加NC,少量的NC就能显著增加体系的阻燃性能,当mNC/m(LLDPE+IFR)=0.02时,阻燃体系的LOI为32.7%,LLDPE-IFR-OMMT-NC的残炭率达到19.04%,PHRR相比于纯LLDPE降低了57%.OMMT和NC的加入能催化LLDPE-IFR成炭,形成致密的炭层,增加炭层的强度,从而提高复合材料的阻燃性能.  相似文献   

10.
高密度聚乙烯/蒙脱土纳米复合材料膨胀阻燃体系的性能   总被引:1,自引:0,他引:1  
使用以乙烯/醋酸乙烯共聚物(EVA)为相容剂的高密度聚乙烯/蒙脱土(HDPE/OMT)纳米复合材料作为基体,制备了含不同成炭剂的聚磷酸铵(APP)膨胀阻燃体系,对其阻燃性能进行了比较和研究,并分析了蒙脱土与膨胀阻燃剂协效作用的机理。热重分析(TGA)、垂直燃烧(UL-94)、极限氧指数(LOI)、锥形量热计结果表明:APP/季戊四醇(PER)体系熔融过程较短可形成蒙脱土增强炭层;PER/PA/OMT体系中较高的有机物含量有利于蒙脱土迁移和堆积。  相似文献   

11.
利用锥形量热仪(CONE)在35kW/m2热辐照条件下,并结合极限氧指数(LOI)和UL-94垂直燃烧测试方法对聚丙烯(PP)/乙烯-醋酸乙烯酯共聚物(EVA)/有机蒙脱土(OMMT)纳米复合材料和加入无卤复配阻燃剂制备的PP/EVA/OMMT/氢氧化铝(ATH)/三氧化二锑(AO)纳米复合阻燃材料的热释放速率、烟释放及材料在燃烧时的质量损失行为进行了研究。结果表明,添加5%(质量分数)OMMT可以提高PP/EVA复合材料的阻燃性能,燃烧时的热释放速率、质量损失率以及烟释放量减少,且OMMT与无卤复配阻燃剂之间可产生阻燃协同作用,使纳米复合阻燃材料的阻燃性能、热稳定性和抑烟性进一步增强。  相似文献   

12.
利用原位插层反应制得磷腈类衍生物修饰的改性磷酸锆(F-ZrP),并用机械共混工艺制得阻燃硅橡胶复合材料(FRSR).采用X射线衍射(XRD)、透射电子显微镜(TEM)、傅立叶红外光谱(FTIR)、热重(TG)、扫描电子显微镜(SEM)分别对磷酸锆的结构及其在硅橡胶基体的分散进行表征,并结合FRSR的垂直燃烧(UL-94)、极限氧指数(LOI)、锥形量热测试及残渣表面形貌的观察,研究了不同份数的F-ZrP复配聚磷酸铵对FRSR阻燃性能的影响并和添加未改性磷酸锆的样品性能对比,并对阻燃机理进行初步探讨;最后分析FRSR的力学性能.结果表明:F-ZrP拥有更大的层间距,而且在FRSR中分散的更好;当1 phr F-ZrP和19 phr APP复配使用时,UL-94达V-0级且LOI值为31.4,热释放速率峰值为265.3 kW/m~2,拉伸强度达8.11 MPa,FRSR的阻燃性能和力学性能得到明显的改善.适量的F-ZrP和APP复配使用能在气相和固相发挥协效阻燃作用,F-ZrP与APP的并用能提高残渣质量并且使阻隔层更加紧实,致密.  相似文献   

13.
采用原位聚合法制备了蜜胺树脂(MF)和环氧树脂(EP)双层包裹聚磷酸铵(APP),得到一种新型核壳结构的微胶囊阻燃剂(EMFAPP).用傅里叶红外光谱(FTIR)和扫描电镜(SEM)对微胶囊的核壳结构进行了表征;用极限氧指数(LOI)、垂直燃烧等级测试(UL 94)对EMFAPP在EP中的阻燃性能进行了研究.EMFAPP在EP基体中阻燃性能优异,当其添加量大于7%时EP/EMFAPP均通过UL 94 V-0级,LOI值达27.0%以上.与未包裹APP相比,EMFAPP耐水性明显提高;经水处理(75℃,6天)后,EMFAPP/EP仍可保持良好的阻燃性能.采用热重分析对EMFAPP及其阻燃复合物的热降解行为进行了研究,EMFAPP能够促进成炭,EP/EMFAPP(8 wt%)在700℃残炭率达16.2%,但其低温稳定性有所下降.此外,利用热失重-红外联用对EMFAPP/EP的热降解行为进行了研究,探讨相关阻燃机理.  相似文献   

14.
采用Hummers方法制备了氧化石墨烯(GO),并通过扫描电镜(SEM)和原子力显微镜(AFM)对GO微观形貌进行了表征.详细研究了GO与硅磷低聚物(DMS-DOPO)在环氧树脂(EP)力学性能和阻燃性能中的协同作用.万能材料试验测试结果表明,GO和DMS-DOPO分别对拉伸强度和断裂伸长率提高效果明显,二者协同后,可使EP拉伸强度和断裂伸长率分别提高17.1%和42.2%.采用热重分析(TG)、极限氧指数(LOI)、垂直燃烧(UL-94)、锥型量热(CONE)和SEM对EP及其阻燃材料的热性能、燃烧性能以及炭层微观形貌进行了表征.EP/DMS-DOPO/GO在600℃残留量为EP的5.2倍,比EP/DMS-DOPO和EP/GO分别提高4.4%和208.6%.EP/DMS-DOPO/GO的LOI值大于30,并能通过UL-94 V-0级别,燃烧过程中可形成内部结构疏松多孔、外表面致密的膨胀炭层.DMS-DOPO和GO协同后使EP热释放速率峰值由1154 k W·m-2降低到710 k W·m-2,总烟释放量降低30%.  相似文献   

15.
聚磷酸铵的疏水改性及聚丙烯阻燃性能   总被引:2,自引:0,他引:2  
首先以γ-氨丙基三乙氧基硅烷(KH550)对聚磷酸铵(APP)进行表面化学修饰,然后用水解后的正硅酸四乙酯在其表面引发原位聚合,最后用十七氟癸基三乙氧基硅烷(氟硅烷)进行外表面修饰,制备了疏水聚磷酸铵(M-APP).M-APP的静态接触角为134°,表明M-APP具有很好的疏水性.通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对M-APP的结构及表面元素进行分析,结果表明,M-APP即为目标产物.将M-APP与三嗪成炭发泡剂(CFA)以质量比4∶1复配制备改性膨胀型阻燃剂(M-APP/CFA),并添加到聚丙烯(PP)中,制备阻燃PP(PP/M-APP/CFA).通过极限氧指数(LOI)和垂直燃烧(UL-94)研究了其阻燃性能,用热重分析(TGA)研究了材料的热降解行为,通过耐水测试研究了耐水性能,通过拉伸、弯曲和冲击强度研究了材料的力学性能,通过扫描电子显微镜(SEM)研究了改性膨胀型阻燃剂与聚合物的相容性.结果表明,当m IFR的添加量为23%时,PP/M-APP/CFA通过UL-94 V-0级,LOI值达到30.8%,且经过耐水测试后,依然能通过UL-94 V-0级,PP/M-APP/CFA的失重率仅为0.92%.在相同实验条件下,由APP制备的PP/M-APP/CFA材料在耐水测试后UL-94测试无级别,失重率达2.45%,表明APP的表面疏水改性大大提高了PP/M-APP/CFA材料的耐水性能.M-APP/CFA的加入提高了材料的热稳定性及成炭性能,燃烧时形成的膨胀炭层能很好地保护内部材料的降解和燃烧,从而提高了材料的阻燃性能.APP的改性提高了M-APP/CFA与PP的相容性,从而提高了材料的力学性能.  相似文献   

16.
膨胀型阻燃UPR复合材料的阻燃及抑烟性能   总被引:2,自引:0,他引:2  
将叶蜡石(PYR)与膨胀型阻燃剂[IFR,聚磷酸铵(APP)/季戊四醇(PER)/三聚氰胺(Mel))复配],应用于不饱和聚酯树脂(UPR),得到膨胀型阻燃UPR复合材料。通过氧指数(LOI)、垂直燃烧(UL94)、烟密度等级(SDR)、热分析(DSC-TG)对阻燃复合材料的阻燃、抑烟及热稳定性能进行了研究。结果表明:在该膨胀型复配阻燃体系中,叶蜡石与IFR存在明显的协效作用,在mPYR∶mAPP∶mPER∶mMel=4∶2∶1∶1,复合阻燃剂的含量为40%的情况下,LOI高达36.4,阻燃级别为UL94 V-0级,SDR为62.95,满足国家对B1级电器类热固性塑料的使用要求。  相似文献   

17.
采用表面接枝硅烷偶联剂法将硼酸负载在可膨胀石墨(EG)表面制得了改性EG(MEG), 并考察了MEG在硬质聚氨酯泡沫(RPUF)中的阻燃性能. 利用扫描电子显微镜、 X射线光电子能谱、 傅里叶变换红外光谱、 膨胀试验及热失重分析对MEG进行了形貌、 元素组成及结构性能表征, 通过热失重分析、 极限氧指数(LOI)及锥形量热仪考察了RPUF/MEG的热稳定性及燃烧性能. 结果表明, 硼硅化合物作为硅硼陶瓷前驱体已负载在EG表面; MEG及RPUF/MEG体系膨胀炭层更为致密, 800 ℃时的残余量分别较EG和RPUF/EG提高了8.7%和3.7%; RPUF/MEG体系的LOI较RPUF/EG有所提高, 热释放速率峰值降低了10%, 产烟速率及CO生成速率均显著降低. RPUF/MEG阻燃性能的提高与MEG负载的硅硼陶瓷前驱体促进了阻燃RPUF各组分间的相互作用及增强了炭层的阻隔性有关.  相似文献   

18.
以多聚甲醛、丙烯胺、苯酚为原料,通过Mannich反应合成烯丙基型苯并噁嗪单体(Bala),并通过核磁共振氢谱(~1H-NMR)确定了其化学结构.将Bala在聚磷酸铵(APP)原位开环聚合后,制备APP微胶囊(BMAPP).傅里叶变换红外(FTIR)和静态接触角测试表明,Bala在APP表面成功聚合,并有效提高APP的疏水性,与纯APP相比,BMAPP的接触角从10.8°提高到了71.3°.将BMAPP添加到环氧树脂(EP)中,制备EP/BMAPP复合材料.通过热重分析仪(TGA)、垂直燃烧(UL-94)、极限氧指数(LOI)、锥型量热仪(CONE)和动态热机械分析仪(DMA)对EP和EP/BMAPP的热性能以及燃烧性能进行对比分析.结果显示,10%的BMAPP的成炭效果最佳,有良好的阻燃性能,可使EP的LOI值从22.6%提高到33.6%,并通过UL-94 V-0级,600°C下残炭率达26.3%.同时,BMAPP可大幅度降低EP燃烧过程中烟密度和热释放速率,提高EP的玻璃化转变温度(T_g).BMAPP/EP-10%中,PBala和APP协同后使EP热释放速率峰值(PHRR)由1247 kW·m~(-2)降低到434 kW·m~(-2),生烟速率(SPR)降低67%左右,T_g从169°C提高到了173°C.  相似文献   

19.
从分子结构设计出发,以六氯环三磷腈、对羟基苯甲醛、三氯氧磷及新戊二醇等为原料,制备了一种新型阻燃剂六[4-(5,5-二甲基-1,3,2-二氧杂己内磷酰基)苯氧基]环三磷腈(HDDCPPCP),并将其与聚磷酸铵(APP)和多壁碳纳米管(MWCNT)复配,应用于环氧树脂(EP)中,制备了HDDCPPCP/APP/MWCNT/EP阻燃复合材料.利用极限氧指数(LOI)、水平燃烧(UL-94)、锥形量热(CONE)、拉伸、弯曲和冲击等方法研究该阻燃复合材料的燃烧性能、热性能及力学性能.实验结果表明,保持阻燃体系总质量分数为30%,当MWCNT质量分数为2%时,EP2(HDDCPPCP/APP/MWCNT/EP)的各项燃烧参数综合表现较好,其LOI值达到42. 8%,热释放速率峰值(pk-HRR)、热释放速率平均值(av-HRR)、有效燃烧热平均值(av-EHC)及一氧化碳释放率平均值(av-CO)相对EP0分别降低92. 5%,93. 0%,65. 2%和66. 6%,呈现出良好的阻燃、抑烟和抑毒性能; EP2的拉伸强度、断裂伸长率、弯曲强度和弯曲模量较好,分别为110. 46 MPa,6. 24%,1259. 99 MPa,377. 72 MPa.  相似文献   

20.
王成乐  丁鹏  李娟 《高分子学报》2016,(11):1594-1598
将具有封闭空心结构的酚醛微球(HPMs)引入到聚丙烯/膨胀阻燃剂(PP/IFR)体系,燃烧时一方面依托PP/IFR形成膨胀多孔炭,另一方面通过HPMs形成空心炭微球,嵌入到前面多孔炭的骨架中,形成具有多层次孔的炭结构,从而调控膨胀炭层,进而调节材料的阻燃性能.通过极限氧指数(LOI)、垂直燃烧(UL-94)等研究了材料的阻燃性能;通过热失重分析(TGA)测试其热稳定性;采用红外热成像仪监测燃烧过程材料的表面温度,用扫描电镜(SEM)观察IFR、HPMs在基体中的分散行为及炭层结构.结果表明,少量HPMs在聚合物中分散得比较均匀.HPMs调控了膨胀炭层,使PP/IFR形成了表层炭致密,内层具有多层次孔的炭结构.这种优质的炭结构可以使样品表面温度迅速降低,从而有效提高PP/IFR体系的阻燃效率,使得PP在添加18 wt%IFR和1 wt%HPMs就可以通过UL-94 V0级别.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号