首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
合成和表征了一系列以[NN]双齿喹啉醛亚胺为配体的二氯化钴配合物(1a~6a)。以X射线单晶衍射技术分析了配合物2a、3a和4a的分子结构。配合物2a和3a以单核四配位(2个氮原子和2个氯原子)的形式结晶,而配合物4a由于取代基空间位阻小,则以双核的形式结晶。在倍半乙基氯化铝(EASC)的活化下,该催化体系引发丁二烯单体聚合,得到顺式-1,4结构含量高达98%的聚丁二烯。催化剂催化活性随配体上取代基吸电子能力的增加而提高,但随取代基空间位阻的增加而降低。所合成的聚丁二烯具有高相对分子质量(M n约为2.0×105)和窄的相对分子质量分布(M w/M n2.7)。  相似文献   

2.
贾翔宇  刘恒  张学全 《应用化学》2014,31(2):147-152
合成和表征了一系列以[NN]双齿喹啉醛亚胺为配体的二氯化钴配合物(1a~6a)。 以X射线单晶衍射技术分析了配合物2a、3a和4a的分子结构。 配合物2a和3a以单核四配位(2个氮原子和2个氯原子)的形式结晶,而配合物4a由于取代基空间位阻小,则以双核的形式结晶。 在倍半乙基氯化铝(EASC)的活化下,该催化体系引发丁二烯单体聚合,得到顺式-1,4结构含量高达98%的聚丁二烯。 催化剂催化活性随配体上取代基吸电子能力的增加而提高,但随取代基空间位阻的增加而降低。 所合成的聚丁二烯具有高相对分子质量(Mn约为2.0×105)和窄的相对分子质量分布(Mw/Mn<2.7)。  相似文献   

3.
制备了α-二亚胺镍()配合物[C6H5—NC(CH3)—C(CH3)N—C6H5]NiBr2(NiL)-TiCl4负载在MgCl2-SiO2载体上的复合催化剂(NiL-TiCl4/MgCl2-SiO2),以AlR3为助催化剂(不用MAO)催化乙烯聚合.研究了NiL和TiCl4负载方法、NiL/TiCl4摩尔比、助催化剂种类及聚合反应温度等对催化剂性能的影响.用IR和13CNMR表征聚合产物支化度及支链结构;用GC-MS监测聚合反应.实验结果表明,NiL-TiCl4复合催化剂具有齐聚原位共聚特性,可催化乙烯原位聚合,合成支化聚乙烯.  相似文献   

4.
1,3-二烯烃类单体聚合物性能优异,在橡胶工业中占据重要地位.以1,3-丁二烯为单体的顺丁橡胶在工业中可生产多种橡胶制品,以异戊二烯为单体的异戊橡胶因其结构与天然橡胶相似,在一些领域可替代天然橡胶. 1,3-二烯类聚烯烃材料的发展大大依赖于聚烯烃催化剂的不断创新.在过去的10年中,铁、钴催化剂因其原材料廉价、配位类型丰富、合成简便、性质稳定等优良特性受到了广泛关注.通过对催化剂的配体结构进行合理设计和调整,能控制聚合物的微观结构、分子量,从而改变聚合产物的性能.本文综述了近10年来铁、钴配合物催化1,3-二烯烃聚合的研究进展,详细讨论了催化剂结构对催化活性、聚合物分子量、聚合物微观结构和聚合物分子量分布的影响.  相似文献   

5.
Treatment of the lithium β-diketiminate [Li{N(R)C(NMe2)C(H)C(NMe2)N(R)}]2 (1) (R=SiMe3) with KOBut, KOH·H2O and CoCl2 in tetrahydrofuran gave in good yields the RO bridged β-diketiminato Co(Ⅱ) complex [Co{N(H)C(NMe2)C(H)C(NMe2)N(R)-( μ-OR)}]2 (2) at ambient condition. The crystal data of (2) are as follows: crystal system, monoclinic; space group, P121/n1; a=0.963 9(3) nm, b=1.077 2(3) nm, c=2.025 0(6) nm, V=2.102 5(10) nm3, Z=2, Dc=1.186 g·cm-3, F(000)=804, μ(Mo )=0.934 mm-1, R1=0.047 8, wR2=0.097 9. In solid state, complex (2) is a dimer bridged by RO (R=SiMe3) group and the two Co2+ are in distorted tetrahedron. CCDC: 249253.  相似文献   

6.
合成了一系列吡啶双亚胺酰氯三齿Ni(Ⅱ) 配合物(1a~1c, 2a~2c), 通过傅里叶变换红外光谱和元素分析对配合物进行表征, 测定了配合物1a~1c的晶体结构. 3个化合物同属于单斜晶系, 且都具有以Ni原子为中心的近似于Cs对称的扭曲三角双锥构型. 该系列配合物通过倍半乙基氯化铝(EASC)活化, 在20 ℃下对丁二烯聚合表现出良好的催化活性, 得到分子量为4700~5200、 cis-1,4含量为74.8%~77.2%(摩尔分数)的液体聚丁二烯. 通过改变配体的结构和聚合条件, 可在一定范围内调控聚丁二烯的结构和分子量.  相似文献   

7.
韩超  刘恒  杨凤  胡雁鸣  张学全 《应用化学》2015,32(8):909-915
合成了一系列吡唑亚胺二齿Ni(Ⅱ)配合物(4a~4e), 并通过红外光谱、元素分析及单晶衍射等对配合物进行了表征。 配合物4b属于单斜晶系, 以Ni原子为中心形成扭曲的三角双锥构型。 该系列配合物在倍半乙基氯化铝(EASC)的活化下, 对1, 3-丁二烯聚合表现出较高的顺-1, 4选择性, 得到了相对分子质量为4500~9000、顺-1, 4含量在91%左右的液体聚丁二烯。 随着取代基空间位阻的增大, 催化活性逐渐减低。 进一步详细研究了Al/Ni摩尔比和温度对聚合的影响。 在20~60 ℃范围内, 催化活性随着聚合温度的升高而提高, 聚合温度为80 ℃时, 聚合物收率仅略有降低, 表明该系列催化剂产生的活性中心具有良好的高温稳定性。  相似文献   

8.
刘博  李世辉  李丹凤  吕奎  崔冬梅  孙广平 《应用化学》2012,29(12):1394-1398
以三烷基钪Sc(CH2SiMe3)3(THF)2和胺基膦亚胺配体为原料,经烷基消去反应合成了胺基膦亚胺(NPN)型配体螯合钪烷基配合物。 其结构用1H NMR、13C NMR、元素分析和X射线衍射分析进行了表征。 在助催化剂有机硼盐和烷基铝的作用下,该配合物对丁二烯聚合表现出了较高的催化活性。 并且随着聚合温度的降低,催化剂的1,2-选择性也随之升高。 聚合温度为-75 ℃时,产物的1,2-结构含量高达98.0%,聚合物的分子量为2.95×104,分子量分布为1.65。  相似文献   

9.
以4种不同结构的α-二亚胺镍(Ⅱ)催化剂[(t-Bu)—N CH—CH N—(t-Bu)]NiBr2(C1), [C6H5—N C(Me)—C(Me) N—C6H5]NiBr2(C2), [(2,6-C6H3(Me)2)—N C(Me)—C·(Me) N—(2,6-C6H3(Me)2)]NiBr2(C3)和[(2,6-C6H3(i-Pr)2)—N C(An)—C(An) N—(2,6-C6H3(i-Pr)2)]NiBr2(An=acenaphthyl)(C4), 在甲基铝氧烷(MAO)作用下, 对甲基丙烯酸甲酯(MMA)进行催化聚合. 以C2为模型催化剂系统研究了Al/Ni摩尔比、 单体浓度、 聚合温度、 聚合时间和反应溶剂对催化活性及聚合物分子量的影响. 在较适合的聚合条件(催化剂用量为1.6 μmol, Al/Ni摩尔比为800, MMA浓度为2.9 mol/L, 甲苯为溶剂, 聚合温度为 60 ℃, 聚合时间为4 h)下, 讨论了催化剂结构对催化活性和聚合物分子量的影响. 研究发现, 催化剂C1~C3催化MMA聚合均得到富含间规结构的聚甲基丙烯酸甲酯(PMMA). 催化剂结构中空间位阻增大导致催化活性降低, 空间位阻最小的 C1催化活性最高[达107.8 kg/(mol Ni·h)]; 而空间位阻最大的C4催化活性仅为7.8 kg/(mol Ni·h). 催化剂结构中给电子效应增加有利于催化活性及聚合物分子量的增加. C2催化活性为62.5 kg/(mol Ni·h), 所得聚合物的分子量为5.0×104; 而具有较强给电子效应的C3催化活性达到96.9 kg/(mol Ni·h), 并得到更高分子量的聚合物(7.6×104).  相似文献   

10.
合成了一系列带有不同取代基的β-二亚胺配体及其Ni(Ⅱ)的配合物.利用核磁共振谱、元素分析和单晶X射线衍射等手段对配体及配合物进行了表征.元素分析和单晶结构分析表明,在相同的实验条件下苯基取代的β-二亚胺配体锂盐与NiCl2反应只能得到双配体化合物1;而2,6-二甲基苯基及2,6-二异丙基苯基取代的配体锂盐与NiCl2反应得二聚的单氯化物2和3,2个Ni原子通过双氯桥连接在一起.配合物2和3经烷基铝活化后催化乙烯聚合可得到高分子量聚乙烯,活性可达到2.0×105gPE/(molcat·h),分子量最高可达到100万以上.  相似文献   

11.
胡雁鸣  张学全 《高分子科学》2016,34(9):1060-1069
Cobalt and nickel complexes (1a-1d and 2a-2d, respectively) supported by 2-imidate-pyridine ligands were synthesized and used for 1,3-butadiene polymerization. The complexes were characterized by IR and element analysis, and complex 1a was further characterized by single-crystal X-ray diffraction. The solid state structure of complex 1a displayed a distorted tetrahedral geometry. Upon activation with ethylaluminum sesquichloride (EASC), all the complexes showed high activities toward 1,3-butadiene polymerization. The cobalt complexes produced polymers with high cis-1,4 contents and high molecular weights, while the nickel complexes displayed low cis-1,4 selectivity and the resulting polymers had low molecular weights. The catalytic activities of the complexes highly depended on the ligand structure. With the increment of polymerization temperature, the cis-1,4 content and the molecular weight of the resulting polymer decreased.  相似文献   

12.
A series of cobalt(II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes (tridentate [NOO] ligands) was prepared and characterized by FT-IR and elemental analysis along with single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that a dinuclear centrosymmetrical structure formed, in which each cobalt atom is surrounded by two bridged ligands and two acetate groups as a distorted octahedron. These dinuclear cobalt complexes displayed high catalytic activities for the polymerization of 1,3-butdiene on activation with organoaluminum cocatalysts to yield cis-1,4-polybutadiene with high selectivity. Ethylaluminum sesquichloride (EASC) was found to be the most efficient cocatalyst resulting in high conversion of butadiene and cis-1,4 content in the polymers with moderate molecular weight. The high catalytic activity and stereoselectivity could be achieved in a wide range of reaction conditions. All the dinuclear cobalt complexes (C1-C6) yielded predominantly cis-1,4-polybutadienes (> 96%) with negligible amounts of trans-1,4 (< 2.4%) and 1,2-vinyl (< 1.5%) products under the Al/Co molar ratio of 80 at 25 °C. The ligand modification by varying the substituents at the 4-position of phenol and on the imino-N aryl ring showed slight influence on the catalytic activity and microstructure of the resulting polymers.  相似文献   

13.
In this work a laboratory polymerization scale process was studied for the production of polybutadiene with high content of cis-1,4 repeating units. A Ziegler-Natta catalytic system based on neodymium versatate (catalyst), diisobutylaluminium hydride (cocatalyst) and tert-butyl chloride (chlorinating agent) was used. The influence of solvent nature (pure grade) and possible contaminants (electron donors) in a recovered solvent from a butadiene-styrene anionic polymerization industrial plant on the stereoselectivity and catalytic activity, molecular weight and molecular weight distribution of the resultant polybutadienes was studied. The polymers were characterized by infrared spectroscopy and size exclusion chromatography. Polybutadienes with cis-1,4 units content in the range of 99-98% were produced. The polymers weight-average molecular weight, , varied from 2.23 × 105 to 4.47 × 105 and the molecular weight distribution, MWD, from 3.1 to 5.1.  相似文献   

14.
A series of 2,6-bis(imino)pyridyl Co(II) complexes of the general formulas [2,6-(ArNCMe)2C5H3N]CoCl2 (Ar = -C6H5, 3a; 2-MeC6H4, 3b; 2-EtC6H4, 3c; 2-iPrC6H4, 3d; 2,6-iPr2C6H3, 3e; 4-iPrC6H4, 3f; 4-FC6H4, 3g; 4-CF3C6H4, 3h; 2-FC6H4, 3i; 2,6-F2C6H3, 3j; 2-Me-4-FC6H3, 3k and 2,6-Me2-4-FC6H2, 3l) and [2,6-(ArNCH)2C5H3N]CoCl2 (Ar = -C6H5, 3m; 2-EtC6H4, 3n and 4-iPrC6H4, 3o) have been synthesized and characterized. The structures of new complexes 3a, 3f-3h and 3m-3o are further confirmed by X-ray crystallography. All complexes adopt distorted trigonal bipyramidal configuration with the equatorial plane formed by the pyridyl nitrogen atoms and the two chlorine atoms. In the complexes 3m and 3o, three aromatic rings are essentially coplanar, which is in sharp contrast to the other complexes, where three rings are almost orthogonal to each other. With methylaluminoxane (MAO) as cocatalyst in toluene at room temperature, the complexes show moderate to high conversion (42-99%) in butadiene polymerization, producing polybutadiene with tunable cis-1,4 structure (77.5-97%) and controllable molecular weight and molecular weight distribution. The catalytic activity, selectivity as well as the molecular weight and molecular weight distribution of the resultant polymer are found to be dependent on the size and nature of substituents on iminoaryl rings and their positions located. By deliberately tuning the ligand structure, more efficient catalyst in terms of high activity and high selectivity can be obtained.  相似文献   

15.
Octahedral iron(II) and cobalt(II) based complexes, [N,N′-di(quinoline-2-methylene)-1,2-phenylenediimine]MCl2, and [N,N′-di(quinoline-2-methylene)diiminocyclohexane]MCl2 (M = Co and Fe), bearing tetradentate diimino nitrogen ligands were prepared and used in tert-butylacrylate (t-BA) polymerization after activation with methylaluminoxane (MAO). In general, polyacrylates with high molar mass and narrow molar mass distribution (MMD ≈ 2) were obtained. In order to understand the influence of the ligand on the polymerization process, polymerization behaviour of the hexacoordinated complexes was compared to pentacoordinated iron(II) and cobalt(II) complexes, 2,6-bis[1-(cyclohexylimido)ethyl]pyridine MCl2 (M = Co and Fe), bearing tridentate diimine nitrogen ligands as well as to free iron(II) chloride. The ability of the MAO activated hexacoordinated complexes to polymerize methylacrylate (MA) and methyl methacrylate (MMA) was also considered, but reduced activities as well as lower molar mass polymers were obtained than in the experiments with t-BA.  相似文献   

16.
The cyclodimerization of 1,3-butadiene was performed to synthesize 1,5-cyclooctadiene by using nickel-phosphite based catalyst system. The optimization of cyclodimerization reaction was done to achieve up to 80% selectivity towards 1,5-cyclooctadiene. 1,5-Cyclooctadiene, thus synthesized, was subsequently employed as a chain transfer agent (CTA) for controlling the molecular weight (M.W.) of cis-polybutadiene rubber (BR) in cobalt-complex catalyzed 1,3-butadiene polymerization reaction. The M.W. of BR was reduced from 6.7 to 1.88 × 105 g/mol by escalating the concentration of 1,5-cyclooctadiene from 0% to 0.5% with respect to 1,3-butadiene (monomer) concentration. Similar reducing trend was observed for the Mooney viscosity and gel content of BR with increasing 1,5-cyclooctadiene concentration. The efficacy of 1,5-cyclooctadiene as a CTA for 1,3-butadiene polymerization reaction was further explored by conducting polymerization reaction in various solvents and at higher monomer conversion (∼70%). The effect of 4-vinyl cyclohexene, which was a dominant byproduct during cyclodimerization of 1,3-butadiene, was also investigated. The presence of 4-vinyl cyclohexene has shown adverse effect in the polymerization reaction and was not functioning as a chain transfer agent. Finally, a feasibility of replacement of commercially used gaseous CTA, 1,2-butadiene, by in-house synthesized liquid CTA, 1,5-cyclooctadiene, was also investigated.  相似文献   

17.
Preparation of two imidazolium salts, two monomeric nickel(II) and one cobalt(II) complexes bearing imidazolium ligands is described, The solid-state structures of these compounds have determined by single-crystal X-ray diffraction. After activation with methylaluminoxane (MAO) the nickel complexes show moderate catalytic activities of up to 6 × 105 g PE mol−1Ni h−1 for polymerization of ethylene. Catalytic activities, molecular weights have been investigated under the various reaction conditions.  相似文献   

18.
Phosphine-pyrazolyl based tripod ligands ROCH2C(CH2Pz)2(CH2PPh2) (R = H, Me, allyl; Pz = pyrazol-1-yl) were efficiently synthesized and characterized. Reactions of these ligands with [Ru(η6-p-cymene)Cl2]2 afforded complexes of the type [Ru(η6-p-cymene)Cl2](L) (6-8) in which the ligands exhibit κ1-P-coordination to the metal center. Complex [Ru(η6-p-cymene)Cl2{Ph2PCH2C(CH2OH)(CH2Pz)2}] (6) underwent chloride-dissociation in CH2Cl2/MeCN to give complex [RuCl(η6-p-cymene){κ2(P,N)-Ph2PCH2C(CH2OH)(CH2Pz)2}][Cl] (9). Complexes 6-9 demonstrated poor to moderate catalytic activity in the transfer hydrogenation of acetophenone. All these complexes were fully characterized by analytical and spectroscopic methods and their molecular structures were determined by X-ray crystallographic study.  相似文献   

19.
A series of iron(II) complexes (4a-d, 10, and 11) bearing 2,6-bis[(imino)ethyl]pyridine-(3a-d), quinolinaldimine-(8) and thiophenaldimine-(9) based ligands were disclosed as active complexes for the polymerization of tert-butylacrylate (t-BA). After activation with methyl aluminoxane (MAO), the complexes showed moderate to high polymerization activities and produced high molar mass polymers. In addition, the catalyst system 4d/MAO was examined for the polymerization of methyl methacrylate (MMA) and n-vinylcarbazole (NVC). The influence of MAO/Cat. molar ratio, polymerization time, and monomer concentration on the polymerization reaction of methyl methacrylate was explored.In the polymerization of tert-butylacrylate with 2,6-bis[(imino)ethyl]pyridine iron(II)-based catalysts, bulky terminal aliphatic substituents have a favorable influence on the polymerization activity compared to the aromatic ones. This catalyst system was also more active than the quinolinaldimine-, (10) and thiophenaldimine-, (11) based catalysts.  相似文献   

20.
Complexes of 2-((3,5-dimethyl)-1H-pyrazol-1-ylmethyl)pyridine (L1), 2-((3,5-ditert-butyl-1H-pyrazol-1-yl)methyl)pyridine (L2), 2-((3,5-diphenyl)-1H-pyrazol-1-yl)methyl)pyridine (L3), 2-((3,5-bis(trifluoromethyl)-1H-pyrazol-1-ylmethyl)pyridine (L4) and 2,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridine (L5) with cobalt(II), iron(II) and nickel(II), Ni(L1)Cl2 (1), Co(L1)Cl2 (2), Fe(L1)Cl2 (3), Ni(L2)Cl2 (4), Ni(L3)Cl2 (5), Co(L3)Cl2 (6), Fe(L3)Cl2 (7), Ni(L4)Cl2 (8) and Ni(L5)Cl2 (9), were used as catalyst precursors to produce vinyl-addition type norbornene polymers. Both the identity of the metal center and nature of ligand affected the polymerization behaviour of the resultant catalysts. Nickel catalysts were generally more active than the corresponding iron and cobalt analogues. The polynorbornene produced have high molecular weights (0.5-2.1 × 106 g/mol) and narrow molecular weight distributions. Analyses of polymer microstructure using NMR and IR spectroscopy confirmed the polymers produced to be vinyl-addition polynorbornene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号