首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
采用大涡模拟方法和单方程亚格子模式对小尺度量进行模拟。研究了不同强度壁面射流激励对圆管内气相流动的影响,模拟结果给出了射流对瞬态拟序结构发展、时平均流向速度分布的影响。随着射流强度的增加,射流入口附近流体的回流现象增强。射流强度足够大时可以减小管壁处的切应力值,同时会减小壁面附近流动速度,这种速度分布会导致气体夹带颗粒的能力下降,从而在实际两相流动中容易造成壁面附近的气粒返混现象。  相似文献   

2.
混合层流动拟序结构的大涡模拟   总被引:2,自引:0,他引:2  
采用大涡模拟方法对空间发展的二维平面混合层进行了数值模拟 ,动量方程采用分步投影法求解 ,亚格子项采用标准Smagorinsky亚格子模式模拟 ,压力泊松方程采用修正的循环消去法快速求解 ,同时求解了标志物输运方程以实现数值流场显示。模拟结果给出了混合层流动的瞬态发展过程以及流动中拟序结构的发展演变过程 ,成功地模拟了混合层发展中的各种瞬态细节过程 ,如涡的卷起、增长 ,涡与涡之间的配对、合并过程 ,以及大涡破碎为小涡的级联过程 ,为各种以混合层流动为原型流动的射流、尾流等工业流动的控制和优化提供了理论基础。  相似文献   

3.
本文采用三种不同亚网格尺度模型对带有V型稳定器的模型燃烧室二维瞬态紊流流动进行了大涡模拟。并在交错网格系下用SIMPLE算法和混合差分格式求解离散方程。数值研究拟不同型式入口速度分布和不同亚网格尺度模型下模型燃烧室二维瞬态紊流流场。计算结果表明不同入口速度分布和不同亚网格尺度模型对瞬态流场和出口速度分布有一定的影响。本文通过数值模拟,揭示了V型稳定器后旋涡的产生和脱落过程。通过计算结果及实验数据的比较可知,本文采用的亚网格尺度模型可以用来模拟模型燃烧室紊流流场及稳定器后面回流区的流动情况。  相似文献   

4.
时间发展平面混合流的三维演化   总被引:6,自引:0,他引:6  
傅德薰  马延文 《力学学报》1998,30(2):129-137
采用高精度差分方法和群速度控制方法,求解三维可压缩N S方程,直接数值模拟了时间发展的平面混合流.研究了平面混合流三维拟序结构的形成及发展.给出了流动失稳后涡的卷起,相邻两涡的对并,激波的形成及发展.指出,涡对并所诱导产生的激波对三维拟序结构的形成及发展过程是重要的.  相似文献   

5.
基于新型解耦算法的激波诱导燃烧过程数值模拟   总被引:2,自引:0,他引:2  
刘君  刘瑜  周松柏 《力学学报》2010,42(3):572-578
对一种模拟化学非平衡流动的时间和空间二阶精度新型解耦算法进行两方面改进,流动算子采用基于Runge-Kutta方法的时间格式以后, 可以推广到更多的空间差分格式,化学反应源项求解算子可以采用梯形公式、拟稳态逼近法和变系数常微分方程求解器. 对H化学非平衡流动; 解耦算法; 计算方法对一种模拟化学非平衡流动的时间和空间二阶精度新型解耦算法进行两方面改进,流动算子采用基于Runge-Kutta方法的时间格式以后,可以推广到更多的空间差分格式,化学反应源项求解算子可以采用梯形公式、拟稳态逼近法和变系数常微分方程求解器.对H_2/Air预混气体中激波诱导振荡燃烧的Lehr试验进行模拟,考察了化学动力学模型、网格尺寸和差分格式耗散大小对计算结果的影响,同时对不同的化学反应源项算子求解算法的计算效率进行了比较.  相似文献   

6.
燃烧室两相流场亚网格燃烧模型的研究   总被引:2,自引:0,他引:2  
在三维任意曲线坐标系下采用不同的亚网格燃烧模型对环形燃烧室火焰筒气液两相湍流瞬态反应流进行大涡模拟.计算中所采用的数学度模型有:k方程亚网格尺度模型估算亚网格湍流黏性;热通量辐射模型估算辐射换热,分别采用亚网格EBU燃烧模型(E-A model)、亚网格二阶矩输运方程模型(SOM)和亚网格二阶矩代数模型(SOM-A)估算化学反应速率.并在非交错网格系统下气相采用SIMPLE算法和混合差分格式求解,液相采用Lagrange处理,并用PSIC算法对其进行求解.通过实验结果和计算结果的比较,表明在三维任意曲线坐标系下对燃烧室火焰简两相湍流油雾燃烧流场进行大涡模拟,3种不同的亚网格燃烧模型都能真实反映两相湍流化学反应流流动及实际燃烧过程,而采用亚网格二阶矩输运方程模型稍优于其他两种亚网格燃烧模型.  相似文献   

7.
提出一种Fourier-Legendre谱元方法用于求解极坐标系下的Navier-Stokes方程,其中极点所在单元的径向采用Gauss-Radau积分点,避免了r=0处的1/r坐标奇异性。时间离散采用时间分裂法,引入数值同位素模型跟踪同位素的输运过程验证数值模拟的精度,分别利用谱元法和有限差分法的迎风差分格式求解匀速和加速坩埚旋转流动中的同位素方程。计算结果表明,有限差分法中的一阶迎风差分格式存在严重的数值假扩散,二阶迎风差分格式的数值结果较精确,增加节点可以有效地缓解数值扩散。然而,谱元法具有以较少节点得到高精度解的优势。  相似文献   

8.
超声速平板边界层斜波失稳转捩过程研究   总被引:6,自引:0,他引:6  
马汉东  潘宏禄  王强 《力学学报》2007,39(2):153-157
以5阶迎风和6阶对称紧致格式混合差分求解三维可压缩滤波Navier-Stokes方程,对Mach 数为4.5, Reynolds数为10000的空间发展平板边界层湍流进行了大涡模拟. 时间推进采用 紧致存储3阶Runge-Kutta方法,亚格子尺度模型为修正Smagorinsky涡黏性模型. 通过在 入口边界叠加一对线性最不稳定第一模态斜波扰动,数值模拟得到了平板层流边界层失稳转 捩直至湍流的演化过程. 对流场转捩过程中瞬时量及统计平均量的分析表明,数值模拟结果 与理论吻合,得到的Y型剪切层、交替\Lambda涡结构以及转捩后期的发卡涡结构的发展 变化与相关文献结果一致,湍流流谱定性合理.  相似文献   

9.
亚、跨、超音速及不可压流动的数值分析方法的研究   总被引:4,自引:0,他引:4  
为了对亚、跨、超音速及不可压无粘流动进行数值模拟,将LU-SGS方法与预处理方法结合,给出了PLU-SGS方法。方程离散基于有限体积法,采用高阶精度AUSMPW格式。方程求解采用了特征边界条件。通过典型算例的数值试验对比分析,表明PLU-SGS方法可以有效地对亚、跨、超音速及不可压流动进行数值模拟,并具有较高的计算精度和收敛速度。  相似文献   

10.
NND格式在非结构网格中的推广   总被引:21,自引:1,他引:21  
张来平  张涵信 《力学学报》1996,28(2):135-142
在张涵信提出的无波动、无自由参数的差分格式(NND格式)的基础上,构造了适用于非结构网格的二阶精度NND有限体积格式,解决了现有非结构网格方法中为抑制激波附近的波动而必须引入含自由参数的人工粘性项的困难,并采用网格自适应技术以提高效率.通过对二维平板激波反射和前台阶在管道内的流动问题的计算,表明本方法可有效地用于Euler方程的求解.  相似文献   

11.
Multiphase flows are ubiquitous in our daily lifeand engineering applications.It is important to investigatethe flow structures to predict their dynamical behaviors effectively.Lagrangian coherent structures(LCS) defined bythe ridges of the finite-time Lyapunov exponent(FTLE) isutilized in this study to elucidate the multiphase interactionsin gaseous jets injected into water and time-dependent turbulent cavitation under the framework of Navier-Stokes flowcomputations.For the gaseous jets injected into water,the highlightedphenomena of the jet transportation can be observed by theLCS method,including expansion,bulge,necking/breaking,and back-attack.Besides,the observation of the LCS revealsthat the back-attack phenomenon arises from the fact that theinjected gas has difficulties to move toward downstream region after the necking/breaking.For the turbulent cavitatingflow,the ridge of the FTLE field can form a LCS to capturethe front and boundary of the re-entraint jet when the adverse pressure gradient is strong enough.It represents a barrier between particles trapped inside the circulation regionand those moving downstream.The results indicate that theFTLE field has the potential to identify the structures of multiphase flows,and the LCS can capture the interface/barrieror the vortex/circulation region.  相似文献   

12.
Local transport of the flow momentum and scalar admixture in the near-field of turbulent swirling jets (Re = 5,000) has been investigated by using a combination of the particle image velocimetry and planar laser-induced fluorescence methods. Advection and turbulent and molecular diffusions are evaluated based on the measured distributions of the mean velocity and concentration and the Reynolds stresses and fluxes. As has been quantified from the data, the flow swirl intensifies the entrainment of the surrounding fluid and promotes mass and momentum exchange in the outer mixing layer. A superimposed swirl results in the appearance of a wake/recirculation region at the jet axis and, consequently, the formation of an inner shear layer. In contrast to the scalar admixture, the momentum exchange in the inner shear layer is found to be strongly intensified by the swirl. For the jet with the highest considered swirl rate, a substantial portion of the surrounding fluid is found to enter the unsteady central recirculation zone, where it mixes with the jet that is issued from the nozzle. The contribution of the coherent velocity fluctuations, which are induced by large-scale vortex structures, to the turbulent transport has been evaluated based on triple decomposition, which was based on proper orthogonal decomposition analysis of the velocity data sets. For the considered domain of the jet with the highest swirl rate and vortex breakdown, the contributions of detected helical vortex structures, inducing pressing vortex core, to the radial fluxes of the flow momentum and the scalar admixture are found to locally exceed 65% and 80%, respectively.  相似文献   

13.
横向紊动射流的数值与实验研究进展   总被引:1,自引:0,他引:1  
郭婷婷  李少华  徐忠 《力学进展》2005,35(2):211-220
横向紊动射流作为流体运动的一种重要类型,广泛存在于如: 燃气轮机气膜冷却、锅炉燃烧室等的燃烧控制, V/STOL(垂直或短距离起落)飞机、废气排放的控制等工程实际应用中.由于射流的存在,增加了流场的复杂性,流场中同时存在射流剪切层涡、马蹄形涡系、反向旋涡对和尾迹涡等4种涡系结构,这对流体力学理论研究具有重要意义.长期以来,研究人员从理论分析、实验测量和数值模拟方面对横向紊动射流进行了大量的研究工作,目前已经认识了流场中的许多流动特性和流动机理.从数值模拟和实验研究两个方面,比较并分析了国内外横向紊动射流研究的现状和研究结果,评述了不同湍流模型以及不同的实验测量方法对横向紊动射流的预测能力,讨论了存在的问题并对该领域的研究方向进行了展望.   相似文献   

14.
15.
An unsteady transient axisymmetric turbulent jet was studied experimentally. The initial flow perturbation consisted of a sudden and large decrease in the ejection velocity. The temporal evolution of the mean and fluctuating unsteady velocity field was measured by using X hot-wire probes. In the jet far field, adaptation of the externally imposed unsteadiness to the local jet time scale is confirmed quantitatively. The main features of the phase averaged velocity field are presented and comments are made about the instantaneous state of the turbulence energetics. Transient mean radial velocities are deduced and an important increase of the instantaneous rate of entraining external fluid into the jet is found. Finally, we show that the pressure effect due to radial impusle terms plays an important role in the propagation of the mean perturbation. The longitudinal adaptation of the perturbation time scale driven by the local jet time scale provides a turbulent flow that is intermediate to quasi-static flows and rapidly distorted flows.We wish to thank Professor H. Fiedler and Professor M. Wolfshtein for their helpful comments about this work. We have benefited greatly from discussions with Dr. H.J. Nuglisch, Professor E.K. Longmire and Dr. A. Sevrain and of the technical support of G. Couteau and J.F. Alquier.  相似文献   

16.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

17.
 The turbulent, three dimensional and time dependent flow field of a precessing jet is investigated. In the present case the jet precession is generated by mechanically rotating a round jet inclined relative to the axis of rotation. A conditional flow visualisation technique is used to complement three dimensional laser Doppler velocity data, time-averaged and phase-averaged at the frequency of precession. The conditional phase-averaging technique enables phase-averaged velocity contours and vectors to be obtained which reveal flow patterns and structures within the flow field. Time-averaging of the velocity data shows that these structures are significant in that they generate a reverse flow (recirculation) region between the jet and its spinning axis. They are found also to cause a rapid decay of the mean velocity. The characteristics of the precessing jet found here are compared with previous investigations of the same flow and with investigations of other turbulent jets. Received: 17 March 1995/Accepted: 7 December 1995  相似文献   

18.
Large-eddy simulations of the flow field around twin three-dimensional impinging jets were carried out to simulate the near-ground hover configuration of a vertical takeoff and landing (VTOL) aircraft. Both the impinging jet and the upwash caused by the collision of the wall jets are modeled in this study. The evolution of the vortical structures in the impinging jet flow field, due to the introduction of axisymmetric and azimuthal perturbations at the jet exit, has been investigated. The vortical structures formed in the jet shear layer due to azimuthal forcing, show significant three-dimensional vortex stretching effects when compared to the structures formed during axisymmetric forcing. Breakdown of the large-scale structures into smaller vortices also occurs much earlier during azimuthal forcing. When compared to the upwash formed during axisymmetric forcing, the azimuthally perturbed jet forms an upwash that is less coherent and results in a weaker upload or lift-off force on the aircraft undersurface. Comparison with available experimental data indicates good agreement for the centerline velocity decay, the wall pressure variation and the phase speed of the vortical structures.  相似文献   

19.
Round jets (diameter D) discharging into a confined cross flow (dimension 3.16D × 21.05D) are investigated experimentally. Two configurations are considered: (1) a single jet (momentum flux ratio, J = 155) and (2) two opposed jets with two different momentum flux ratios (J = 60, and 155). A two-component laser-Doppler anemometer is used to make a detailed map of the normal stresses and mean velocities in the symmetry plane of the jets. In addition, smoke-wire and laser-sheet visualization are used to study the flow.

The rate of bending of the single confined jet is found to be higher than the rate of bending of an unconfined jet with the same momentum flux ratio. In the far field, the jet centerline velocity is observed to decay more slowly than the unconfined jet, indicating poor turbulent diffusion of linear momentum. Annular shear layer vortices are visualized on the upstream edge of the jet in the near field. In the far field, the flow visualization suggests that the jet loses its integrity and fragments into independent regions that are convected by the cross flow.

In the opposed jet configuration at the high momentum flux ratio (J = 155), the jets impinge in the center of the duct, and a pair of vortices is observed upstream of the impingement region. The flow visualization implies that the impingement vortices form quasi periodically and have a finite life span. In the impingement region, the jets are observed to penetrate alternately beyond the symmetry plane of the duct. In the two-jet configuration with J = 60, the jets do not impinge on each other owing to the higher rate of bending. Instead, the flow visualization indicates that the shear layers of the jets penetrate to the central region and periodically pinch off regions of the potential-like cross-flow fluid where they meet. The pinch-off regions of cross-flow fluid are convected by the turbulent flow for large distances, yet remain essentially unmixed.  相似文献   


20.
In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k–e{\varepsilon} model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in rectangular cross-section jets is considered. The aspect ratios that were considered for this work were 1:1 to 1:4. The results showed that the jet entrains more with smaller AR. Special attention has been drawn to the influence of the Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the rectangular jet. An influence on the jet evolution is found for smaller Re, but the jet is close to a converged state for higher Reynolds numbers. The inflow conditions have considerable influence on the jet characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号