首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photolysis of a series of octahedral monoazido complexes of the type [LM(III)(didentate ligand)(N(3))](n)(+)X(n) of vanadium(III), chromium(III), and manganese(III) in the solid state or in solution yields quantitatively the corresponding six-coordinate nitrido complexes [LM(V)(didentate ligand)(N)](n)(+)X(n) and 1 equiv of dinitrogen. L represents the macrocycle 1,4,7-triazacyclononane or its N-methylated derivative (L'), the didentate ligands are pentane-2,4-dionate (acac), 2,2,6,6-tetramethylheptane-3,5-dionate (tacac), picolinate (pic), phenanthroline (phen), and oxalate (ox), and X(-) represents perchlorate or hexafluorophosphate. The following nitrido complexes were prepared: [LV(V)(N)(acac)](ClO(4)) (6), [LCr(V)(N)(acac)](ClO(4)) (13), [LCr(V)(N)(tacac)](ClO(4)) (14), [LCr(V)(N)(pic)](ClO(4)) (15), [LCr(V)(N)(phen)](ClO(4))(2) (16), [LCr(V)(N)(ox)] (19), [L'Mn(V)(N)(acac)]PF(6) (21). Photolysis of [LCr(III)(N(3))(ox)] (17) in the solid state produces the &mgr;-nitrido-bridged mixed-valent species [L(2)Cr(2)(ox)(2)(&mgr;-N)](N(3)) (18). The structures of the precursor complex [L'Mn(acac)(N(3))]BPh(4) (20), of 13, and of [L'Mn(V)(N)(acac)]BPh(4) (21) have been determined by X-ray crystallography. Complex 13 crystallizes in the orthorhombic space group Pnma, with cell constants a = 27.187(5) ?, b = 9.228(2) ?, c = 7.070(1) ?, V = 1773.7(6) ?(3), and Z = 4; complex 20 crystallizes in the triclinic space group P&onemacr; with a = 14.769(5) ?, b = 16.83(1) ?, c = 16.96(1) ?, alpha = 108.19(5) degrees, beta = 105.06(4) degrees, gamma = 99.78(4) degrees, V = 3719(2) ?(3), and Z = 4; and complex 21 crystallizes in the monoclinic space group P2(1)/n with a = 10.443(3) ?, b = 16.035(4) ?, c = 21.463(5) ?, beta = 95.76(1) degrees, V = 3575.9(14) ?(3), and Z = 4. The Cr(V)&tbd1;N and Mn(V)&tbd1;N distances are short at 1.575(9) and 1.518(4) ?, respectively, and indicate a metal-to-nitrogen triple bond.  相似文献   

2.
The reaction of [N(PPh(3))(2)][CpCo(CN)(3)] and [Cb*Co(NCMe)(3)]PF(6) (Cb* = C(4)Me(4)) in the presence of K(+) afforded {K subset[CpCo(CN)(3)](4)[Cb*Co](4)}PF(6), [KCo(8)]PF(6). IR, NMR, ESI-MS indicate that [KCo(8)]PF(6) is a high-symmetry molecular box containing a potassium ion at its interior. The analogous heterometallic cage {K subset[Cp*Rh(CN)(3)](4)[Cb*Co](4)}PF(6) ([KRh(4)Co(4)]PF(6)) was prepared similarly via the condensation of K[Cp*Rh(CN)(3)] and [Cb*Co(NCMe)(3)]PF(6). Crystallographic analysis confirmed the structure of [KCo(8)]PF(6). The cyanide ligands are ordered, implying that no Co-CN bonds are broken upon cage formation and ion complexation. Eight Co-CN-Co edges of the box bow inward toward the encapsulated K(+), and the remaining four mu-CN ligands bow outward. MeCN solutions of [KCo(8)](+) and [KRh(4)Co(4)](+) were found to undergo ion exchange with Cs(+) to give [CsCo(8)](+) and [CsRh(4)Co(4)](+), both in quantitative yields. Labeling experiments involving [(MeC5H4)Co(CN)(3)]- demonstrated that Cs(+)-for-K(+) ion exchange is accompanied by significant fragmentation. Ion exchange of NH(4+) with [KCo(8)](+) proceeds to completion in THF solution, but in MeCN solution, the exclusive products were [Cb*Co(NCMe)(3)]PF(6) and the poorly soluble salt NH(4)CpCo(CN)(3). The lability of the NH(4+)-containing cage was also indicated by the rapid exchange of the acidic protons in [NH(4)Co(8)](+). Oxidation of [MCo(8)](+) with 4 equiv of FcPF(6) produced paramagnetic (S = 4/2) [Co(8)](4+), releasing Cs(+) or K(+). The oxidation-induced dissociation of M(+) from the cages is chemically reversed by treatment of [Co(8)](4+) and CsOTf with 4 equiv of Cp(2)Co. Cation recognition by [Co(8)] and [Rh(4)Co(4)] cages was investigated. Electrochemical measurements indicated that E(1/2)(Cs(+))--E(1/2)(K(+)) approximately 0.08 V for [MCo(8)](+).  相似文献   

3.
The gas-phase ligand exchange reactions between Co(II) and Zn(II) complexes containing the acetylacetonate (acac), hexafluoroacetylacetonate (hfac), and trifluorotrimethylacetylacetonate (tftm) ligands were investigated using a triple quadrupole mass spectrometer. The gas-phase mixed ligand products of [Cu(acac)(tftm)](+), [Ni(acac)(tftm)](+), [Cu(hfac)(tftm)](+), and [Ni(hfac)(tftm)](+) were formed following the co-sublimation of either homo-metal or hetero-metal precursors and are reported herein for the first time. The fragmentation patterns of these mixed ligand species along with those of Cu(tftm)(2) and Ni(tftm)(2) are also presented. The collision cell of the instrument was utilized to examine the gas-phase reactions between mass-selected ions and specific neutral target compounds.  相似文献   

4.
Binuclear complexes with cyclometalated ends of the [Ru(bpy)(2)(ppH)](+) type (bpy = 2,2'-bipyridine, ppH = 2-phenylpyridine), linked by various spacers, have been prepared. These spacers are made of one or two triple bonds, or bis-ethynyl aryl groups, with aryl = benzene, thiophene, or anthracene. The complexes with bis-ethynyl aryl spacers are obtained by Sonogashira couplings with suitable bis-alkynes, starting from the [Ru(bpy)(2)(ppBr)](+) synthon. Complexes with one or two triple bonds are obtained from the true alkyne [Ru(bpy)(2)(pp-CCH)](+) cyclometalated precursor, using respectively a Sonogashira coupling with the iodo derivative [Ru(bpy)(2)(ppI)](+), or an oxidative homocoupling. Some complexes with tert-butyl-substituted bipyridine ancillary ligands have also been obtained. Oxidation of the binuclear complexes occurs near 0.5 V, i.e., more easily than with [Ru(bpy)(3)](2+)-based complexes. A single anodic wave is observed, with almost no detectable splitting, corresponding to two closely spaced one-electron processes. Differential pulse voltammetry allows the determination of the corresponding comproportionation constants involving the mixed valence Ru(II)[bond]Ru(III) forms. Controlled potential electrolysis yields the mixed valence forms in comproportionation equilibrium with homovalent forms. Analysis of the intervalence transitions allows the calculation of the electronic coupling element V(ab). This series of complexes exhibit relatively large couplings when comparing with complexes of similar metal-metal distances, with a special mention for the anthracene-containing spacer, which appears particularly efficient for mediating the metal-metal interaction. The results can be rationalized by theoretical calculations at the extended Hückel level.  相似文献   

5.
We present here a first theoretical characterization of iron(V) (S = (3)/(2)) and iron(VI) (S = 0) porphyrin intermediates. The Fe(V) calculations exhibit exceptionally narrow convergence radii and we believe that for this reason they have long eluded researchers working on high-valent iron intermediates. The Fe(V)-N(nitrido) bond distance in the DFT(PW91/TZP) optimized geometry of Fe(V)(P)(N) is 1.722 A, comparable to and slightly longer than the Fe(IV)-O bond distance of 1.684 A in Fe(IV)(P)(O) and the Fe(IV)-N(imido) bond distance of 1.698 A in Fe(IV)(P)(NH). In contrast, the Fe(VI)-N(nitrido) bond distances in [Fe(VI)(P)(N)](+) (S = 0) and Fe(VI)(P)(N)(F) (S = 0) are dramatically shorter, 1.508 and 1.533 A, respectively, consistent with the formal triple bond character of the Fe(VI)-N(nitrido) bond. The nitrido ligand appears to be uniquely capable of stabilizing a "true" Fe(V) center, in the sense defined in the paper. All three unpaired electrons in Fe(V)(P)(N) are completely localized on the Fe(V)-N(nitrido) axis, with the Fe and N gross atomic spin populations being 1.579 and 1.550, respectively. In contrast, an axial ligand set consisting of an oxide and a fluoride do not stabilize an Fe(V) ground state but favor an electronic structure best described as an Fe(IV)-oxo porphyrin pi-cation radical.  相似文献   

6.
The complexes [Ni(YR)(triphos)]BPh(4) (Y = S, R = Ph or Et or Y = Se, R = Ph; triphos = (Ph(2)PCH(2)CH(2))(2)PPh) have been prepared and characterized, and the X-ray crystal structure of [Ni(SPh)(triphos)]BPh(4) has been solved. In MeCN, [Ni(YR)(triphos)](+) are protonated by [lutH](+) (lut = 2,6-dimethylpyridine) to give [Ni(YHR)(triphos)](2+). Studies on the kinetics of these equilibrium reactions reveal an unexpected difference in the reactivities of [Ni(SPh)(triphos)](+) and [Ni(SEt)(triphos)](+). In both cases, the reactions exhibit a first-order dependence on the concentration of complex. When R = Ph, the dependence on the concentrations of [lutH(+)] and lut is given by k(obs) = k(1)(Ph)[lutH(+)] + k(-1)(Ph)[lut], which is typical of an equilibrium reaction where k(1)(Ph) and k(-1)(Ph) correspond to the forward and back reactions, respectively. Analogous behavior is observed for [Ni(SePh)(triphos)](+). However, for [Ni(SEt)(triphos)](+), the kinetics are more complicated, and k(obs) = (k(1)k(2)[lutH(+)] + (k(-2) + k(2)))/(k(1)[lutH(+)] + k(-1)[lut]), which is indicative of a mechanism involving two coupled equilibria in which the initial protonation of the thiolate is followed by a unimolecular equilibrium reaction that is assumed to involve the formation of an eta(2)-EtS-H ligand. The difference in reactivity between the complexes with alkyl and aryl thiolate ligands is a consequence of the (Ni(triphos))(2+) site "leveling" the basicities of these ligands. The pK(a)'s of the PhSH and EtSH constituents coordinated to the (Ni(triphos))(2+) are 16.0 and 14.6, respectively, whereas the difference in pK(a)'s of free PhSH and EtSH differ by ca. 4 units. The pK(a) of [Ni(SeHPh)(triphos)](+) is 14.4. The more strongly sigma-donating EtS ligand makes the (Ni(triphos))(2+) core sufficiently electron-rich that the basicities of the sulfur and nickel in [Ni(SEt)(triphos)](+) are very similar; therefore, the proton serves as a bridge between the two sites. The relevance of these observations to the proposed mechanisms of nickel-based hydrogenases is discussed.  相似文献   

7.
The free energies interconnecting nine tungsten complexes have been determined from chemical equilibria and electrochemical data in MeCN solution (T = 22 °C). Homolytic W-H bond dissociation free energies are 59.3(3) kcal mol(-1) for CpW(CO)(2)(IMes)H and 59(1) kcal mol(-1) for the dihydride [CpW(CO)(2)(IMes)(H)(2)](+) (where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), indicating that the bonds are the same within experimental uncertainty for the neutral hydride and the cationic dihydride. For the radical cation, [CpW(CO)(2)(IMes)H](?+), W-H bond homolysis to generate the 16-electron cation [CpW(CO)(2)(IMes)](+) is followed by MeCN uptake, with free energies for these steps being 51(1) and -16.9(5) kcal mol(-1), respectively. Based on these two steps, the free energy change for the net conversion of [CpW(CO)(2)(IMes)H](?+) to [CpW(CO)(2)(IMes)(MeCN)](+) in MeCN is 34(1) kcal mol(-1), indicating a much lower bond strength for the 17-electron radical cation of the metal hydride compared to the 18-electron hydride or dihydride. The pK(a) of CpW(CO)(2)(IMes)H in MeCN was determined to be 31.9(1), significantly higher than the 26.6 reported for the related phosphine complex, CpW(CO)(2)(PMe(3))H. This difference is attributed to the electron donor strength of IMes greatly exceeding that of PMe(3). The pK(a) values for [CpW(CO)(2)(IMes)H](?+) and [CpW(CO)(2)(IMes)(H)(2)](+) were determined to be 6.3(5) and 6.3(8), much closer to the pK(a) values reported for the PMe(3) analogues. The free energy of hydride abstraction from CpW(CO)(2)(IMes)H is 74(1) kcal mol(-1), and the resultant [CpW(CO)(2)(IMes)](+) cation is significantly stabilized by binding MeCN to form [CpW(CO)(2)(IMes)(MeCN)](+), giving an effective hydride donor ability of 57(1) kcal mol(-1) in MeCN. Electrochemical oxidation of [CpW(CO)(2)(IMes)](-) is fully reversible at all observed scan rates in cyclic voltammetry experiments (E° = -1.65 V vs Cp(2)Fe(+/0) in MeCN), whereas CpW(CO)(2)(IMes)H is reversibly oxidized (E° = -0.13(3) V) only at high scan rates (800 V s(-1)). For [CpW(CO)(2)(IMes)(MeCN)](+), high-pressure NMR experiments provide an estimate of ΔG° = 10.3(4) kcal mol(-1) for the displacement of MeCN by H(2) to give [CpW(CO)(2)(IMes)(H)(2)](+).  相似文献   

8.
H Isago  Y Kagaya 《Inorganic chemistry》2012,51(15):8447-8454
The first arsenic(V)-phthalocyanines, [As(tbpc)X(2)](+), where tbpc denotes tetra(tert-butyl)phthalocyaninate, C(48)H(48)N(8)(2-) and X = F, Cl, and Br) have been prepared through an appropriate oxidative addition process to a highly soluble arsenic(III) derivative, [As(tbpc)](+). Among them, [As(tbpc)F(2)](+) has been isolated as PF(6)(-) salt. Unlike conventional metal derivatives of phthalocyanines, they show a significantly red-shifted (by >1000 cm(-1)) Q-band and facile reduction of the macrocyclic ligand (redox potentials for [As(tbpc)F(2)](+) have been determined by cyclic voltammetry; 1.13 V vs ferricinium(+)/ferrocene (tbpc(-/2-)), -0.45 V (tbpc(2-/3-)), and -0.90 V (tbpc(3-/4-)), of which the values are anodically shifted by about 1 V) as compared to those of conventional phthalocyanines. Although the anomaly in their spectral and electrochemical properties is similar to that of the known antimony analogues, the arsenic-phthalocyanines have been found less stable.  相似文献   

9.
The gas-phase reactions of a series of (di)manganese carbonyl positive ions with 1,4,7-trimethyl-1,4,7-triazacyclononane (Me(3)TACN) have been examined with the aid of Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. The monomanganese carbonyl ions, [Mn(CO)(n)](+) (n = 2-5), react predominantly by ligand exchange and to a minor extent by electron transfer with the formation of the radical cation of Me(3)TACN. For the [Mn(CO)(n)](+) (n = 2-4) ions, the ligand exchange results in the exclusive formation of a [Mn(Me(3)TACN)](+) complex, whereas small amounts of [Mn(CO)(Me(3)TACN)](+) ions are also generated in the reactions of the [Mn(CO)(5)](+) ion. The [Mn(2)(CO)(n)](+) ions (n = 2, 4 and 5) react also by competing electron transfer and ligand exchange. The reaction of the [Mn(2)(CO)(2)](+) and [Mn(2)(CO)(4)](+) ions is associated with cleavage of the Mn--Mn bond as evidenced by the pronounced formation of [Mn(Me(3)TACN)](+) ions. For [Mn(2)(CO)(5)](+), the ligand exchange leads mainly to the formation of [Mn(2)(CO)(n)(Me(3)TACN)](+) (n = 1-3) ions. These primary product ions react subsequently by the incorporation of a second Me(3)TACN molecule to afford [Mn(2)(CO)(Me(3)TACN)(2)](+) and [Mn(2)(CO)(2)(Me(3)TACN)(2)](+) ions. Both of these latter species incorporate an oxygen molecule with formation of ions with the assigned composition of [Mn(2)(O(2))(CO)(Me(3)TACN)(2)](+) and [Mn(2)(O(2))(CO)(2)(Me(3)TACN)(2)](+).  相似文献   

10.
A detailed structural and thermodynamic study of a series of cobalt-hydride complexes is reported. This includes structural studies of [H(2)Co(dppe)(2)](+), HCo(dppe)(2), [HCo(dppe)(2)(CH(3)CN)](+), and [Co(dppe)(2)(CH(3)CN)](2+), where dppe = bis(diphenylphosphino)ethane. Equilibrium measurements are reported for one hydride- and two proton-transfer reactions. These measurements and the determinations of various electrochemical potentials were used to determine 11 of 12 possible homolytic and heterolytic solution Co-H bond dissociation free energies of [H(2)Co(dppe)(2)](+) and its monohydride derivatives. These values provide a useful framework for understanding observed and potential reactions of these complexes. These reactions include the disproportionation of [HCo(dppe)(2)](+) to form [Co(dppe)(2)](+) and [H(2)Co(dppe)(2)](+), the reaction of [Co(dppe)(2)](+) with H(2), the protonation and deprotonation reactions of the various hydride species, and the relative ability of the hydride complexes to act as hydride donors.  相似文献   

11.
A number of copper salts, Cu(OOCCH(3))(2), Cu(ClO(4))(2), Cu(NO(3))(2), CuCl(2) and CuSO(4) have been tested for their ability to form binuclear copper-caffeine complexes. The electrospray ionization (ESI) mass spectra of methanol solution containing caffeine and CuCl(2) or CuSO(4) show signals of two copper atom containing ions, so the signals correspond to binuclear complexes: [2Caf + Cu(2)SO(4)](+), [2Caf + Cu(2)](+), [2Caf + Cu(2)Cl](+), [2Caf + Cu(2)Cl(2)](+) and [2Caf + Cu(2)Cl(3)](+). Sulfate and chloride anion are characterized by charge densities higher than those of the carboxylate, nitrate and perchlorate anion. Thus, due to the electrostatic forces, the binuclear complexes containing SO(4)(2-) or Cl(-) can survive the transfer from solution to the gas phase and then can successfully be observed on ESI mass spectra. The ion [2Caf + Cu(2)Cl(3)](+) is present in solution and could be detected when using methanol/chloroform as solvent. The ions [2Caf + Cu(2)](+), [2Caf + Cu(2)Cl](+) and [2Caf + Cu(2)Cl(2)](+) are formed from the [2Caf + Cu(2)Cl(3)](+) ion (by subsequent loss of Cl atoms) on transfer from the solution to the gas phase or in the gas phase. The ion [2Caf + Cu(2)](+) does not contain a bridging agent, thus it is reasonable to assume that it contains a Cu-Cu bond.  相似文献   

12.
We report results of a theoretical study, based on density functional theory (DFT), on the structural, electronic, optical, and chiroptical properties of small thiolated gold clusters, [Au(n)(SR)(m) (n = 12-15, 16-20; m = 9-12, 12-16)]. Some of these clusters correspond to those recently synthesized with the surfactant-free method. To study the cluster physical properties, we consider two cluster families with Au(6) and Au(8) cores, respectively, covered with dimer [Au(2)(SR)(3)] and trimer [Au(3)(SR)(4)] (CH(3) being the R group) motifs or their combinations. Our DFT calculations show, by comparing the relaxed structures of the [Au(6)[Au(2)(SR)(3)](3)](+), [Au(6)[Au(2)(SR)(3)](2)[Au(3)(SR)(4)]](+), [Au(6)[Au(2)(SR)(3)][Au(3)(SR)(4)](2)](+), and [Au(6)[Au(3)(SR)(4)](3)](+) cationic clusters, that there is an increasing distortion in the Au(6) core as each dimer is replaced by a longer trimer motif. For the clusters in the second family, Au(8)[Au(3)(SR)(4)](4), Au(8)[Au(2)(SR)(3)][Au(3)(SR)(4)](3), Au(8)[Au(2)(SR)(3)](2)[Au(3)(SR)(4)](2), Au(8)[Au(2)(SR)(3)](3)[Au(3)(SR)(4)], and Au(8)[Au(2)(SR)(3)](4), a smaller distortion of the Au(8) core is observed as dimer motifs are substituted by trimer ones. An interesting trend emerging from the present calculations shows that as the number of trimer motifs increases in the protecting layer of both Au(6) and Au(8) cores, the average of the interatomic Au(core)-S distances reduces. This shrinkage in the Au(core)-S distances is correlated with an increase of the cluster HOMO-LUMO (H-L) gap. From these results, it is predicted that a larger number of trimer motifs in the cluster protecting layer would induce larger H-L gaps. By analyzing the electronic transitions that characterize the optical absorption and circular dichroism spectra of the clusters under study, it is observed that the molecular orbitals involved are composed of comparable proportions of orbitals corresponding to atoms forming the cluster core and the protecting dimer and trimer motifs.  相似文献   

13.
The "bare" complex [Cu(PhOH)(PhO)](+) with a phenol (PhOH) and a phenoxy (PhO) ligand bound to copper is studied both experimentally and computationally. The binding energies and structure of this complex are probed by mass spectrometry, infrared multi-photon dissociation, and DFT calculations. Further, the monoligated complexes [Cu(PhO)](+) and [Cu(PhOH)](+) are investigated for comparison. DFT calculations on the [Cu(PhOH)(PhO)](+) complex predict that a phenolate anion interacts with copper(II) preferentially through the oxygen atom, and the bonding is associated with electron transfer to the metal center resulting in location of the unpaired electron at the aromatic moiety. Neutral phenol, on the other hand, interacts with copper preferentially through the aromatic ring. The same arrangements are also found in the monoligated complexes [Cu(PhO)](+) and [Cu(PhOH)](+). The calculations further indicate that the bond strength between the copper atom and the oxygen atom of the phenoxy radical is weakened by the presence of neutral phenol from 2.6 eV in bare [Cu(PhO)](+) to 2.1 eV in [Cu(PhOH)(PhO)](+).  相似文献   

14.
Electronic structures and spectroscopic properties of a series of nitrido-osmium (VI) complex ions with acetylide ligands, [OsN(C[Triple Bond]CR)(4)](-) (R[Double Bond]H, (1), CH(3) (2), and Ph (3)) were investigated theoretically. The structures of the complexes were fully optimized at the B3LYP and CIS level for the ground states and excited states, respectively. The calculated bond lengths of Os[Triple Bond]N (1.639 A in 1, 1.642 A in 2, and 1.643 A in 3) and Os-C (2.040 A in 1, 2.043 A in 2, and 2.042 A in 3) in ground state agree well with the experimental results. The bond length of Os[Triple Bond]N bond is lengthened by ca. 0.13 A in the A (3)B(2) excited state compared to the (1)A(1) ground state, which is consistent with the lower vibration frequency of nu(Os-N) ( approximately 780 cm(-1)) in the excited state than that ( approximately 1175 cm(-1)) in the ground state. Among the calculated dipole-allowed absorptions at lambda>250 nm, the intense absorption at 261 nm for 1, 266 nm for 2, and 300 nm for 3 were attributed to the (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The lowest energy absorption at lambda(max)=393 nm for 1, 400 nm for 2, and 400 nm for 3 were assigned as (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], (1)[d(xy)(Os)+pi(C[Triple Bond]C)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C)], and (1)[d(xy)(Os)+pi(C[Triple Bond]CPh)]-->(1)[pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh)], respectively. The calculated phosphorescence emission at lambda(max)=581 nm for 1, 588 nm for 2, and 609 nm for 3 were originated from (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]C))(1)(d(xy)(Os)+pi(C[Triple Bond]C))(1)], and (3)[(pi(*)(N[Triple Bond]Os)+pi(*)(C[Triple Bond]CPh))(1)(d(xy)(Os)+pi(C[Triple Bond]CPh))(1)] excited state, respectively.  相似文献   

15.
A series of asymmetrical bis-tridentate cyclometalated complexes including [Ru(Mebib)(Mebip)](+), [Ru(Mebip)(dpb)](+), [Ru(Mebip)(Medpb)](+), and [Ru(Mebib)(tpy)](+) and two bis-tridentate noncyclometalated complexes [Ru(Mebip)(2)](2+) and [Ru(Mebip)(tpy)](2+) were prepared and characterized, where Mebib is bis(N-methylbenzimidazolyl)benzene, Mebip is bis(N-methylbenzimidazolyl)pyridine, dpb is 1,3-di-2-pyridylbenzene, Medpb is 4,6-dimethyl-1,3-di-2-pyridylbenzene, and tpy is 2,2':6',2″-terpyridine. The solid-state structure of [Ru(Mebip)(Medpb)](+) is studied by X-ray crystallographic analysis. The electrochemical and spectroscopic properties of these ruthenium complexes were studied and compared with those of known complexes [Ru(tpy)(dpb)](+) and [Ru(tpy)(2)](2+). The change of the supporting ligands and coordination environment allows progressive modulation of the metal-associated redox potentials (Ru(II/III)) from +0.26 to +1.32 V vs Ag/AgCl. The introduction of a ruthenium cyclometalated bond in these complexes results in a significant negative potential shift. The Ru(II/III) potentials of these complexes were analyzed on the basis of Lever's electrochemical parameters (E(L)). Density functional theory (DFT) and time-dependent DFT calculations were carried out to elucidate the electronic structures and spectroscopic spectra of complexes with Mebib or Mebip ligands.  相似文献   

16.
The addition of thiols to ((t)BuO)(3)Mo[triple bond]N in toluene leads to the formation of (RS)(3)Mo[triple bond]N compounds as yellow, air-sensitive compounds, where R = (i)Pr and (t)Bu. The single-crystal structure of ((t)BuS)(3)Mo[triple bond]N reveals a weakly associated dimeric structure where two ((t)BuS)(3)Mo[triple bond]N units (Mo-N = 1.61 A, Mo-S = 2.31 A (av)) are linked via thiolate sulfur bridges with long 3.03 A (av) Mo-S interactions. Density functional theory calculations employing Gaussian 98 B3LYP (LANL2DZ for Mo and 6-31G* for N, O, S, and H) have been carried out for model compounds (HE)(3)Mo[triple bond]N and (HE)(3)MoNO, where E = O and S. A comparison of the structure and bonding within the related series ((t)BuE)(3)Mo[triple bond]N and ((t)BuE)(3)MoNO is made for E = O and S. In the thiolate compounds, the highest energy orbitals are sulfur lone-pair combinations. In the alkoxides, the HOMO is the N 2p lone-pair which has M-N sigma and M-O pi* character for the nitride. As a result of greater O p pi to Mo pi interactions, the M-N pi orbitals of the Mo-N triple bond are destabilized with respect to their thiolate counterpart. For the nitrosyl compounds, the greater O p pi to Mo d pi interaction favors greater back-bonding to the nitrosyl pi* orbitals for the alkoxides relative to the thiolates. The results of the calculations are correlated with the observed structural features and spectroscopic properties of the related alkoxide and thiolate compounds.  相似文献   

17.
Birk T  Bendix J 《Inorganic chemistry》2003,42(23):7608-7615
The transfer of a terminal nitrido ligand from Mn(V)(N)(salen) to Cr(III) complexes is explored as a new preparative route to Cr(V) nitrido complexes. Reaction of Mn(V)(N)(salen) with labile CrCl(3)(THF)(3) in acetonitrile solution precipitates [Mn(Cl)(salen)].(CH(3)CN) and yields a solution containing a mixture of Cr(V) nitrido species with only labile auxiliary ligands. From this solution Cr(V) nitrido complexes with bidentate monoanionic ligands can be obtained in high yields. Five coordinate complexes of 8-hydroxoquinolinate (quin), 1,3-diphenylpropane-1,3-dionate (dbm), and pyrrolidinedithiocarbamate (pyr-dtc) have been structurally characterized: Cr(N)(quin)(2) (1) crystallizes as compact orange prisms in the triclinic space group P with cell parameters a = 7.2450(6) A, b = 8.1710(4) A, c = 13.1610(12) A, alpha = 80.519(6) degrees, beta = 75.721(7) degrees, gamma = 75.131(5) degrees, V = 725.47(10) A(3), Z = 2. Cr(N)(dbm)(2) (2) crystallizes as green rhombs in the orthorhombic space group Pbca with cell parameters a = 14.6940(6) A, b = 16.4570(18) A, c = 19.890(3) A, V = 4809.8(8) A(3), Z = 8. Cr(N)(pyr-dtc)(2) (3) crystallizes as orange prisms in the monoclinic space group P21/c with cell parameters a = 14.8592(14) A, b = 8.5575(5) A, c = 11.8267(12) A, beta = 106.528(7) degrees, V = 1441.7(2) A(3), Z = 4. Complexes 2 and 3 represent new coordination environments for first row transition metal nitrido complexes. The d-orbital energy splitting in these systems with relatively weak equatorial donors differs significantly from the pattern in vanadyl and the previously known first row transition metal nitrido complexes. The d(x)2(-)(y)2 orbital in 2 and 3 is lower in energy and well resolved from the M-N pi orbitals [d(zx),d(yz)].  相似文献   

18.
A series of molybdenum and tungsten nitrido, [M(N)(X)(diphos)2], and imido complexes, [M(NH)(X)(diphos)2)]Y, (M = Mo, W) with diphosphine coligands (diphos = dppe/depe), various trans ligands (X = N3-, Cl-, NCCH3) and different counterions (Y-= Cl-, BPh4-) is investigated. These compounds are studied by infrared and Raman spectroscopies; they are also studied with isotope-substitution and optical-absorption, as well as emission, spectroscopies. In the nitrido complexes with trans-azido and -chloro coligands, the metal-N stretch is found at about 980 cm(-1); upon protonation, it is lowered to about 920 cm(-1). The 1A1 --> 1E (n --> pi) electronic transition is observed for [Mo(N)(N3)(depe)2] at 398 nm and shows a progression in the metal-N stretch of 810 cm(-1). The corresponding 3E --> 1A (pi --> n) emission band is observed at 542 nm, exhibiting a progression in the metal-N stretch of 980 cm(-1). In the imido system [Mo(NH)(N3)(depe)2]BPh4, the n --> pi transition is shifted to lower energy (518 nm) and markedly decreases in intensity. In the trans-nitrile complex [Mo(N)(NCCH3)(dppe)2]BPh4, the metal-N(nitrido) stretching frequency increases to 1016 cm(-1). The n --> pi transition now is found at 450 nm, shifting to 525 nm upon protonation. Most importantly, the reduction of this nitrido trans-nitrile complex is drastically facilitated compared to its counterparts with anionic trans-ligands (Epred = -1.5 V vs Fc+/Fc). On the other hand, the basicity of the nitrido group is decreased (pKa{[Mo(NH)(NCCH3)(dppe)2](BPh4)2} = 5). The implications of these findings with respect to the Chatt cycle are discussed.  相似文献   

19.
A novel heterobimetallic alkynyl-bridged complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)], 1, and its oxidized species, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 2, have been synthesized and their X-ray crystal structures determined. A related vinylidene complex, [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond](H)C[double bond]C)Fe(C(5)Me(5))(dppe)][PF(6)], 3, has also been synthesized and characterized. The cyclic voltammogram of 1 shows a quasireversible reduction couple at -1.49 V (vs SCE), a fully reversible oxidation at -0.19 V, and a quasireversible oxidation at +0.88 V. In accord with the electrochemical results, density-functional theory calculations on the hydrogen-substituted model complex Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C)Fe(C(5)H(5))(dHpe) (Cp = C(5)H(5), dHpe = H(2)P[bond](CH(2))(2)[bond]PH(2)) (1-H) show that the LUMO is mainly bipyridine ligand pi* in character while the HOMO is largely iron(II) d orbital in character. The electronic absorption spectrum of 1 shows low-energy absorption at 390 nm with a 420 nm shoulder in CH(2)Cl(2), while that of 2 exhibits less intense low-energy bands at 432 and 474 nm and additional low-energy bands in the NIR at ca. 830, 1389, and 1773 nm. Unlike the related luminescent rhenium(I)-alkynyl complex [Re(bpy)(CO)(3)(C[triple bond]C[bond]C(6)H(4)[bond]C[triple bond]C[bond]H)], 4, complex 1 is found to be nonemissive, and such a phenomenon is attributed to an intramolecular quenching of the emissive d pi(Re) --> pi*(bpy) (3)MLCT state by the low-lying MLCT and LF excited states of the iron moiety. Interestingly, switching on of the luminescence property derived from the d pi(Re) --> pi*(bpy) (3)MLCT state can be demonstrated in the oxidized species 2 and the related vinylidene analogue 3 due to the absence of the quenching pathway.  相似文献   

20.
IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号