首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We devise and apply a simple computational scheme for obtaining localized bonding schemes and their weights from a CASSCF wave function. These bonding schemes are close to resonance structures drawn by chemists. Firstly, a CASSCF wave function is computed. Secondly, the CASSCF computation is repeated but now the delocalized complete active space MOs are substituted by Weinhold's localized natural atomic orbitals. In this way the original CASSCF wave function is represented by a sequence of Slater determinants composed of localized natural atomic orbitals. Thus, a standard CASSCF wave function can be reinterpreted in terms of a local picture. To test the method we obtain localized bonding schemes and their weights for the ground and the pi-pi* excited state of ethylene. Moreover, bonding schemes and their weights are derived for the ground, the 1(1)B(u), and the 2(1)Ag pi-pi* excited states of trans-butadiene. The large weight bonding schemes are shown to be a qualitative indicator for the known photochemistry of butadiene. The remarkable stability of the Arduengo carbene is discussed by obtaining bonding schemes that indicate a stabilizing delocalization of the pi electrons. We illustrate that the large weight bonding schemes are in line with the observed reactivity of the Arduengo carbene.  相似文献   

2.
Localized bonding schemes and their weights have been obtained for the pi-electron system of nitrone by expanding complete active space self-consistent field wave functions into a set of Slater determinants composed of orthogonal natural atomic orbitals (NAOs) of Weinhold and Landis (Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, 2005). Thus, the derived bonding schemes are close to orthogonal valence bond structures. The calculated sequence of bonding scheme weights accords with the sequence of genuine resonance structure weights derived previously by Ohanessian and Hiberty (Chem Phys Lett 1987, 137, 437), who employed nonorthogonal atomic orbitals. This accord supports the notion that NAOs form an appropriate orthogonal one-electron basis for expanding complete active space self-consistent field wave functions into meaningful bonding schemes and their weights.  相似文献   

3.
4.
Intermolecular interactions between a prototypical transition metal hydride WH(CO)2NO(PH3)2 and a small proton donor H2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20–30% of the bond energy and to 30–40% of the bond enthalpy. An energy decomposition analysis reveals that the H?H bond of transition metal hydrides contains both covalent and electrostatic contributions.  相似文献   

5.
Bond distances, vibrational frequencies, dipole moments, dissociation energies, electron affinities, and ionization potentials of MX (XM = Y-Cd, X = F, Cl, Br, I) molecules in neutral, positively, and negatively charged ions were studied by density functional method, B3LYP. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the 4d transition metal s, d orbitals, and the p orbital of halogen. For both neutral and charged molecules, the fluorides have the shortest bond distance, iodides the longest. Although the opposite situation is observed for vibrational frequency, that is, fluorides have the largest value, iodides the smallest. For neutral and anionic species, the dissociation energy tends to decrease with the increasing atomic number from Y to Cd, suggesting the decreasing or weakening of the bond strength. For cationic species, the trend is observed from Y to Ag.  相似文献   

6.
A complete active-space self-consistent-field wave function for the pi-electron part of s-trans-1,3-butadiene has been expanded into a set of localized bonding schemes and their weights. These bonding schemes are close to the resonance structures used in organic chemistry. The expansion technique has been applied to both the electronic ground state and the electronically first-excited singlet and triplet pi,pi* states. The manifolds of large-weight bonding schemes represent approximate resonance hybrids for the ground and the singlet and triplet pi,pi* states of s-trans-1,3-butadiene. These resonance hybrids, obtained by theory alone, permit a qualitative rationalization of a significant part of the known singlet and triplet photochemistry.  相似文献   

7.
The results of experimental and theoretical studies of intermolecular MH...HX and BH...HX hydrogen bonds with the hydride hydrogen atom acting as a proton accepting site are analyzed. Spectral (IR and NMR) criteria for their formation are presented. The spectral, structural, and thermodynamic characteristics of these unusual hydrogen bonds obey the regularities found for classical hydrogen bonds. It was shown that the MH...HX bonds participate in the proton transfer with the formation of nonclassical cationic hydrides and the |M(η2-H2|+ hydrogen bonds are formed in low-polarity media. Problems arising in this new line of investigations are discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 846–851, May, 1998.  相似文献   

8.
Density functional theory calculations were carried out to investigate structures and stabilities of tropone and troponeiron complexes, (tropone)Fe(CO)3, (tropone)Fe(CO)2(PH3) and (tropone)Fe(PH3)3, and their protonated species. The results show that the oxygen-protonated tropone is more stable than the carbon-protonated tropone. On the contrary, in the troponeiron complexes, the carbon protonated species are more stable than the oxygen protonated species. In the neutral and oxygen-protonated complexes, the tropone and oxygen-protonated tropone ligands are η4-coordinated. In the carbon-protonated complexes, the carbon-protonated tropone ligand is η5-coordinated. The results also show that the metal shift for complexes containing phosphine ligands is more difficult than that for those containing carbonyl ligands. For the neutral methyl-substituted troponeiron complexes, steric effect was found to play a key role in determining the relative stability of the regioisomers. For their protonated species, the electron-donating properties of the methyl substituent(s) were found to be important in determining the relative stability among the different regioiosmers.  相似文献   

9.
Density functional theory has been used to examine the dimetallocene‐like dicycloheptatrienyl dimetal compounds of the second‐row transition metals (C7H7)2M2 (M = Ru, Tc, Mo, Nb, Zr). The lowest energy (C7H7)2Mo2 structure is a coaxial structure with terminal η7? C7H7 rings, whereas the lowest energy (C7H7)2M2 structures (M = Ru, Tc, Nb, Zr) are perpendicular structures with bridging η44? C7H7 rings except for the perpendicular (η43? C7H7)2Ru2 structure. The metal–metal bond orders in the (C7H7)2M2 structures (M = Ru, Tc, Mo, Nb), as determined by analysis of their frontier molecular orbitals, suggest preferred 16‐ rather than 18‐electron configurations for the central metal atoms. Thus, in the coaxial (η7? C7H7)2M2 structures the formal bond orders are two for M = Tc and three for M = Mo. For the perpendicular structures both (η43? C7H7)2Ru2 and (η44? C7H7)2Tc2 have 16‐electron configurations with metal–metal single bonds owing to the different modes of bonding of the bridging C7H7 rings in the two structures. For the (C7H7)2Zr2 system the perpendicular structure has a formal Zr?Zr double bond and the coaxial structure has a very long (~3.5 Å) Zr? Zr bond indicating only 12‐ to 14‐electron configurations for the zirconium atoms.  相似文献   

10.
18-crown-6 reacts with TiCl3 in CH2Cl2 to form a complex in which the crown ether functions as a tridentate ligand. Addition of moist hexane affords a molecular complex in which the crown ether functions as a bidentate ligand. A water molecule is bonded directly to the titanium atom and is further hydrogen bonded to three of the oxygen atoms of the crown. The deep blue crystals of the CH2Cl2 adduct belong to the monoclinic space groupP21/n witha=13.481(8),b=8.021(5),c=21.425(9) Å, =97.32(5)°, and calc = 1.51 g cm–3 forZ=4. Refinement led to a conventionalR value of 0.040 based on 873 observed reflections. The Ti–O bond distances for the crown oxygen atoms are 2.123(8) and 2.154(9) Å, while the oxygen atom of the water molecule is bonded at 2.072(8) Å. The octahedral coordination sphere of the titanium atom is completed by the three chlorine atoms at distances of 2.340(5), 2.352(4), and 2.373(4) Å. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82034 (10 pages).  相似文献   

11.
Several transition metal oxides,including α-Fe2O3,Fe3O4,Co3O4,NiO,CuO and ZnO,were synthesized via an easily controlled hydrothermal method at assistance of organic amine(cyclohexylamine or triethylamine).The synthesized samples were identified and characterized by X-ray diffraction(XRD),Transmission Electron Microscopy(TEM),High-resolution Electron Microscopy(HR-TEM),Field Emission Scanning Electron Microscopy(FE-SEM),N2 adsorption/desorption measurement.The resultant metal oxides displayed various morphol...  相似文献   

12.
The thermodynamic and thermal properties of [Cu(L)2·Cl2], [Ni(L)2]·Cl2, [Co(L)2·Cl2]; L=1,2-bis(o-aminophenoxy)ethane (BAFE), complexes have been investigated. The thermal decomposition of the complexes took place in two distinct steps in endothermic reaction up to 700°C. The activation energy E, the entropy change S #, enthalpy H change and Gibbs free energy change G # were calculated from the results of thermogravimetry analysis (TG) and heat capacity from the results of differential scanning calorimetry (DSC). It was found that the thermal stabilities and activation energies of the complexes follow the order Ni(II)>Cu(II)>Co(II) and E Co<E Ni<E Cu, respectively.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
The application of broken symmetry density functional calculations to homobinuclear and heterobinuclear transition metal complexes produces good estimates of the exchange coupling constants as compared to experimental data. The accuracy of different hybrid density functional theory methods was tested. A discussion is presented of the different methodological approaches that apply when a broken symmetry wave function is used with either Hartree–Fock or density functional calculations. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1391–1400, 1999  相似文献   

14.
Some polyacetylene derivatives containing an amine functional group were prepared by the polymerization of propargylamine (PA) and 1,1-diethylpropargylamine (DEPA) with various transition metal catalysts. In the polymerization of PA, Mo-based catalysts were more effective than that of W-based catalysts, and organoaluminum compounds, especially EtAlCl2, were found to be very effective cocatalysts. In the polymerization of DEPA, Mo-and W-based catalyst systems showed a similar catalytic activity. The polymerization easily proceeded in polar solvents such as nitrobenzene and DMF as well as nonpolar aromatic solvents such as chlorobenzene, toluene, etc. The resulting poly(PA) and poly(DEPA) were insoluble in organic solvents regardless of polymerization catalysts but the polymers were found to be stable to air oxidation. Thermogravimetric analyses and thermal transitions of poly(PA) and poly(DEPA) were also studied. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
A review is presented on the extensive work carried out during the last 30 years on layered oxides structurally related to LiCoO2 and LiNiO2. The studies considered here range from the structural and chemical characterization of the layered solids to the detailed evaluation of their aptitude towards lithium deintercalation-intercalation reactions, which form the basis of their successful application in rechargeable battery technology. The different challenges remaining in this area, such as the development of advanced preparation procedures and the optimization of the electrochemical performance by controlled changes in composition, structure, and particle morphology, are discussed. Received: 15 May 1998 / Accepted: 24 July 1998  相似文献   

16.
Transition metal complexes of linear and crosslinked styrene‐maleic acid copolymer were prepared in ethyl alcohol. The complexes appear as micro clusters fairly uniformly distributed in the copolymer matrix. Vapor adsorption–desorption studies of the complex beads with methyl isobutyl ketone (MIBK), toluene and ethyl alcohol show initial fast release followed by a steady and slow release. Hydrogen adsorption at room temperature was studied for a few complexes up to about 650 torr, which showed initial slow adsorption followed by a rapid increase at about 550 torr. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
We describe here a method for selective hydration of nitriles into the corresponding amides by employing commercially available acetaldoxime and simple transition metal catalysts such as nickel salts, zinc salts, cobalt salts and manganese salts in water. Nickel salts show the highest catalytic activity, owing to their relatively small diameter of the metal cation. Nitriles having electron‐withdrawing groups could be converted into the corresponding amides in excellent yields using nickel catalyst at room temperature. Heterocyclic nitriles with heteroatom lone pair positioned ortho to the nitrile group show high reactivity; even these special nitriles could be hydrated by transition metal catalyst and water at refluxing temperature in the absence of acetaldoxime. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We theoretically investigated the influences of dopant transition metal atoms on structures and stability of gold nanoparticles. The optimized structures of Au3M and Au3M in an Au32 cage (M = Au, Sc, Y, and Lu) obtained using relativistic density functional theory, show different configurations. Substitutions of one Au atom in the Au4 cluster by only one M atom cause the Au3M clusters to form equilateral triangles where M atoms prefer the central position, which is different from the original rhombus structure of a pure Au4 cluster. All Au3M nanoparticles, however, assume stable tetrahedral configurations in the Au32 cage. Analysis of electronic structures indicates that the equilateral triangle Au3M nanoparticles have higher chemical stability, in other words, lower reactivity than Au3M@Au32, while interaction energies between M and Au atoms in the Au3M are smaller than those in Au3M@Au32. Different amounts of charge transfer and orbital hybridizations between the Au and M cause the change of the chemical stability and interaction energies. Our results indicate the potential manipulation of gold nanoparticle reactivity by metal substitution.  相似文献   

19.
In this work, we aimed to synthesize and characterize a novel tetra-directional ligand, (2E,2′E)-2,2′-((((2-(1,3-bis(4-((E)-(2-carbamothioylhydrazono)methyl)phenoxy)propan-2-ylidene)propane-1,3-diyl)bis(oxy))bis(4,1-phenylene))bis(methanylylidene))bis(hydrazinecarbothioamide) (5), including thiosemicarbazone group and its novel tetra-directional-tetra-nuclear Schiff base complexes. For this purpose, we used 1,4-dibromo-2,3-bis(bromomethyl)but-2-ene (2) as starting material. 4,4′-((2-(1,3-Bis(4-formylphenoxy)propan-2-ylidene)propane-1,3-diyl) bis(oxy))dibenzaldehyde (3) was synthesized by the reaction of an equivalent 1,4-dibromo-2,3-bis(bromomethyl)but-2-ene (2) and 4 equivalents of 4-hydroxybenzaldehyde. Then, compound 5 was synthesized in high yield (86%) by a condensation reaction of compound 3 with thiosemicarbazide (4). Finally, four novel tetra-nuclear Cr(III) or Fe(III) complexes of compound 5 were synthesized. The synthesized compounds were characterized using elemental analyses, 1H NMR, Fourier transform–infrared spectrometry, liquid chromatography–mass spectrometry (ESI+), and thermal analyses. The metal ratios of the prepared complexes were determined using an atomic absorption spectrophotometer. We also investigated their effects on the magnetic behaviors of [salen, salophen, Cr(III)/Fe(III)] capped complexes. The complexes were found to be low-spin distorted octahedral Fe(III) and distorted octahedral Cr(III), all bridged by thiosemicarbazone.  相似文献   

20.
采用DFT+U方法研究了过渡金属替代的CeO2(111)表面上的NO+CO反应机理,以探求不同过渡金属对N2选择性的影响.结果表明,在反应过程中,反应活性中心由过渡金属单原子与其最近邻的氧空位组成.NO在过渡金属-氧空位上发生N–O断键,不同过渡金属上该还原步骤的难易程度不同.计算发现,右过渡金属Rh,Pd和Pt替代的CeO2(111)表面可以与吸附物之间形成较强的吸附作用,进而可以达到较高的N2选择性.其主要原因是右过渡金属具有较多的d电子,可以与吸附小分子之间形成有效的反馈键.而左过渡金属拥有较少的d电子,难以有效抓住吸附物,最终导致较低的N2选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号