首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Eu3+掺杂的Sr2CeO4发光材料的光致发光研究   总被引:1,自引:0,他引:1       下载免费PDF全文
符史流  尹涛  丁球科  赵韦人 《物理学报》2006,55(9):4940-4945
利用高温固相反应法制备了Eu3+掺杂的Sr2CeO4样品,并对其吸附水前后的光谱特性进行了研究.结果发现,对于刚制备的Sr2-xEuxCeO4+x/2样品, 在Ce4+—O2-的电荷迁移激发中,只有强激发带(~35700cm-1)与Eu3+离子间存在能量传递,而弱激发带 (~29400cm-1)只是引起Ce4+—O2-的电荷迁移发射;在Sr2-xEuxCeO4+x/2样品吸附水后,Eu3+的线状吸收跃迁强度显著增加, Ce4+—O2-两个激发带均向Eu3+离子传递能量. Ce4+—O2-强激发带通过交换作用向Eu3+离子传递能量,而弱激发带与Eu3+离子间的能量传递机理是非辐射多极子近场力的相互作用. 关键词: 2-xEuxCeO4+x/2')" href="#">Sr2-xEuxCeO4+x/2 发光性质 能量传递 吸附水  相似文献   

2.
张林进  叶旭初 《发光学报》2009,30(2):184-188
采用高温固相法合成了SrB4O7 : Eu荧光粉,并研究了不同原料、掺杂浓度、煅烧温度等因素对其发光性能的影响。发射光谱测试结果表明:SrB4O7 : Eu荧光粉的最佳Eu掺杂浓度为2%左右,进一步增大掺杂浓度会导致浓度猝灭。煅烧温度对基质组成影响较大,随着温度的升高,基质中BO4四面体所占比例增大,有利于Eu3+离子的还原。以水合硼酸锶为原料制得样品的发光强度高于以SrCO3和H3BO3为原料制得样品的发光强度。  相似文献   

3.
An Eu2+-activated oxynitride LiSr(4?y)B3O(9?3x/2)Nx:yEu2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr4B3O(9?3x/2)Nx:Eu2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f65d1→4f7 transition of Eu2+. The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr3.99B3O8.25N0.5:0.01Eu2+ phosphors, respectively. Concentration quenching of Eu2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu2+-site emission centers in the LiSr4B3O9 host. These results indicate LiSr4B3O(9?3x/2)Nx:Eu2+ phosphor is promising for application in white near-UV LEDs.  相似文献   

4.
采用溶胶-凝胶法制备出BaGd1-xEuxB9O16红色磷光粉,对过程的物料配比、前驱体处理和晶化温度等制备条件进行了讨论。结果表明,样品在850 ℃下开始晶化,900 ℃时就能够获得较好的晶化产物,结合不同晶化温度下的发光强度比较确定,晶化温度为950 ℃时,BaGd1-xEuxB9O16磷光粉具有较高的结晶状态和发光强度。当Eu浓度x=0.9时具有最大的发光强度;初始原料配比硼酸须按计量过量15%。所得荧光粉的激发光谱峰值为264,394,465,534 nm等,分别归属于Eu-O电荷迁移带及Eu3+7F0-5L67F0-5D27F0-5D1跃迁,发射光谱呈Eu3+的特征红光,最强的发射峰位于614 nm,归属于5D0-7F2跃迁。进一步研究表明该磷光粉中存在着Gd3+对Eu3+的能量传递。  相似文献   

5.
This study evaluated potential applications of green to yellow-emitting phosphors (Sr1−xSi2O2N2: Eu2+x) in blue pumped white light emitting diodes. Sr1-xSi2O2N2: Eu2+x was synthesized at different Eu2+ doping concentrations at 1450 °C for 5 h under a reducing nitrogen atmosphere containing 5% H2 using a conventional solid reaction method. The X-ray diffraction patterns of the prepared phosphor (Sr1-xSi2O2N2: Eu2+x) were indexed to the SrSi2O2N2 phase and an unknown intermediate phase. The photoluminescence properties of these phosphors (Sr1−xSi2O2N2: Eu2+x) showed that the samples were excited from the UV to visible region due to the strong crystal field splitting of the Eu2+ ion. The emission spectra under excitation of 450 nm showed a bright color at 545-561 nm. The emission intensity increased gradually with increasing Eu2+ doping concentration ratio from 0.05 to 0.15. However, the emission intensity decreased suddenly when the Eu2+ concentration ratio was >0.2. As the doping concentration of Eu2+ was increased, there was a red shift in the continuous emission peak. These results suggest that Sr1-xSi2O2N2: Eu2+x phosphor can be used in blue-pumped white light emitting diodes.  相似文献   

6.
Eu3+ doped SrAl2B2O7 phosphors were fabricated by the wet method. The structures of the phosphors were characterized by XRD. The doping content of Eu3+ ions in SrAl2B2O7:Eu3+ phosphors are 1%, 4%, 6%, 8%, 10% (molar fraction), respectively. Luminescence properties were analyzed by measuring the excitation and photoluminescence spectra. The luminescent properties of SrAl2B2O7:Eu3+ phosphors are discussed. It is shown that from 4% to 6% of doping content of Eu3+ ions under 392 nm excitation in SrAl2B2O7:Eu3+ phosphors is optimum.  相似文献   

7.
Blue phosphors Ca1 − xAl2O4: xEu2+ were prepared by high temperature solid-state method. Their structure, morphology and luminescent properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectroscopy. The effect of different amounts of fluxing agent H3BO3 on structure, morphology and luminescent properties of blue phosphors Ca1 − xAl2O4: xEu2+ luminous intensity caused by different amount of H3BO3 was also investigated. The amount of H3BO3 doped Ca1 − xAl2O4: xEu2+ in optimal luminous intensity had been determined. The results showed that both the excitation and emission spectra of samples were all broad bands, and that the peak of emission spectra was near 442 nm, which was corresponding to the 4f65d → 4f7 transition of Eu2+ illuminating blue light. Ca1 − xAl2O4: xEu2+ (x = 3.5 mol%) could be gained with good morphology and the best luminous intensity when H3BO3 mass ratio was 0.5 wt%.  相似文献   

8.
A solution combustion route for the synthesis of Eu3+-activated M2V2O7 (M = Sr, Ba) and their luminescent properties have been investigated. Structure and luminescent characteristics of Sr2V2O7:Eu3+ and Ba2V2O7:Eu3+ nanophosphors have been studied by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry and Fourier transform infra-red spectroscopy. The incorporation of Eu3+ activator in these nanoparticles has been checked by luminescence characteristics. These nanoparticles have displayed red color under a UV source which is due to characteristics transition of Eu3+ from 5D07F2 at 613 nm in both Sr2V2O7:Eu3+ and Ba2V2O7:Eu3+ nanophosphors. In addition, the optimal Eu3+ - doped contents of Sr2(1-x)Eu2xV2O7 and Ba2(1-x)Eu2xV2O7 nanophosphors for both were 4 mol%.  相似文献   

9.
Vacuum ultraviolet (VUV) excitation and photoluminescence (PL) characteristics of Eu3+ ion doped borate phosphors; BaZr(BO3)2:Eu3+ and SrAl2B2O7:Eu3+ are studied. The excitation spectra show strong absorption in the VUV region with the absorption band edge at ca. 200 nm for BaZr(BO3)2:Eu3+ and 183 nm for SrAl2B2O7:Eu3+, respectively, which ensures the efficient absorption of the Xe plasma emission lines. In BaZr(BO3)2:Eu3+, the charge transfer band of Eu3+ does not appear strongly in the excitation spectrum, which can be enhanced by co-doping Al3+ ion into the BaZr(BO3)2 lattices. The luminescence intensity of BaZr(BO3)2:Eu3+ is also increased by Al3+ incorporation into the lattices. The PL spectra show the strongest emission at 615 nm corresponding to the electric dipole 5D07F2 transition of Eu3+ in both BaZr(BO3)2 and SrAl2B2O7, similar to that in YAl3(BO3)4, which results in a good color purity for display applications.  相似文献   

10.
The preparation, structure and luminescence of the Ca1-xSrxAl2O4:Eu2?, RE3? system were studied. Monoclinic CaAl2O4 was the major phase when the strontium content x was from 0 to 0.6, but hexagonal SrAl2O4 was obtained when x was 0.8 and monoclinic SrAl2O4 when x was 1. Only slight Ca/Sr cation solid solubility was observed. The strontium ions dissolved better into the CaAl2O4 phase than vice versa. Two luminescence bands were observed for mixed compositions, peaking at 440 and 530 nm, corresponding to those of the monoclinic CaAl2O4:Eu2? and hexagonal SrAl2O4:Eu2? ones. The persistent luminescence was enhanced by the Ca/Sr replacement. This observation supports the mechanisms where the lattice defects act as traps.  相似文献   

11.
符史流  柴飞  陈洁  张汉焱 《物理学报》2008,57(5):3254-3259
利用高温固相反应法制备了Ca2Sn1-xCexO4和Ca2-ySrySn1-xCexO4一维结构发光体. XPS结果显示 Ca2SnO4拥有两种结合能分别为5277 eV和5293 关键词: 2Sn1-xCexO4')" href="#">Ca2Sn1-xCexO4 2-ySrySn1-xCexO4')" href="#">Ca2-ySrySn1-xCexO4 一维结构 电荷迁移光谱  相似文献   

12.
路芳  张兴华  卢遵铭  徐学文  唐成春 《物理学报》2012,61(14):144209-144209
利用固相反应法制备了Sr和Ba替代的Ca2.955-xMxSi2O7: 0.045Eu2+ (M= Sr, Ba, x= 0.1-0.5)系列荧光粉, 利用较大离子半径的Sr和Ba元素替代Eu掺杂Ca2.955-xMxSi2O7 中的Ca元素,研究Sr和Ba替代对样品结构和发光特性的影响. X射线衍射测试结果表明,少量Sr和Ba替代不会改变基质的晶体结构, 样品仍然为单斜晶系.未替代前, Ca2.955Si2O7: 0.045Eu2+ 样品的发射峰在574 nm左右,随着Sr含量的增加,样品的发射峰发生蓝移; 而Ba含量在x= 0.1-0.4时不会引起发射峰位置的移动, 但x= 0.5样品的发射峰发生蓝移.同等含量的Sr和Ba部分替代样品中的Ca元素, Ba替代样品的光谱强度较强.  相似文献   

13.
The Sr2?x Eu x Al2Si1?y Mo y O7 as a new near-ultraviolet (UV) excited phosphors were synthesized and their luminescence properties under 393-nm excitation were investigated in detail. It was indicated that Sr2?x Eu x Al2SiO7 could be effectively excited by 393 nm, and it exhibited an intense red emission at 617 nm. The introduction of Mo ion and charge compensator ion Na did not change the position of the peaks but strengthened the absorption of the phosphors at ~400 nm and strongly enhanced the emission intensity of Eu3+ under 393-nm excitations. The intense red-emitting phosphor Sr1.56Eu0.22Na0.22Al2Si0.98Mo0.02O7 with tetragonal sheet structure was obtained. Its chromaticity coordinates (0.659, 0.331) was very close to the NTSC standard values (0.67, 0.33) and its emission intensity was about 1.5 times higher than that of the commercial red phosphor Y2O2S:0.05Eu3+. This is considered to be an efficient red-emitting phosphor for near-UV InGaN-based light-emitting diodes (LEDs).  相似文献   

14.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

15.
(Gd1?xEux)(BO2)3 (0≤x≤1) phosphors are synthesized by traditional high temperature solid state reaction. The photoluminescence (PL) properties of Gd(BO2)3 and Gd(BO2)3 activated with Eu3+ are investigated. The PL spectra exhibit the typical characteristic emission and excitation of Gd3+ and Eu3+ ions, and support the energy transfer taking place from Gd3+ to Eu3+ ions. The relationship between Eu3+ doping concentration and emission intensity is also studied. Even if all of the Gd3+ ions are substituted by Eu3+ ions, the concentration quenching between Eu3+ happens. However, the quenching is not complete. The luminescence decay curves are measured, and the lifetimes become short with the Eu3+ content increasing. The decreasing Gd3+ lifetimes also indicates that there exists efficient energy transfer between Gd3+ and Eu3+ ions.  相似文献   

16.
Two series of calcium gallate phosphors: Ca1?xEuxGa4O7 and Ca1?2xEuxNaxGa4O7 (x=0, 0.002, 0.01, 0.02, 0.03, 0.05) were synthesized by a modified Pechini method and their optical properties at 298 and 77 K were investigated. In undoped CaGa4O7 upon 255 nm excitation a bluish white emission (λmax=500 nm) followed by an afterglow of the same color lasting for 10–20 s was observed. Eu3+-doping quenched the host-related luminescence and the characteristic red emission of the dopant with maximum at 613 nm appeared. Its excitation spectrum consisted of a broad band assigned to ligand to metal, O2?→Eu3+, charge transfer absorption and narrow lines arising from intraconfigurational transitions within the 4f6 states of Eu3+ ion. The effects of Eu3+ concentration and Na+ co-doping on the luminescence properties and decay kinetics were studied. Low temperature emission spectra showed that Eu3+ ions are positioned in environments of different symmetries. Their relative populations changed with the activator content. Co-doping with Na+ ions led to a remarkable reduction of the number of Eu3+ sites as well as to noticeable improvement of the luminescence brightness though it did not affect the decay time of the emission. The quantum efficiencies of singly doped CaGa4O7:Eu3+ were very low (in the range of 1–3.7%). Na+ co-doping improved this parameter leading to the highest efficiency of 11% for CaGa4O7:3%Eu3+,3%Na+.  相似文献   

17.
Glasses with molar composition of (100-x)B2O3-x[0.5 BaO-0.5 ZnO], x=40, 50, 60, 70 were prepared from the melts of ZnO, BaCO3 and H3BO3 mixture. The structure and thermal behavior were characterized by IR and Raman spectroscopy, DSC and Dilatometer. The investigation shows that the transition of the structural unit [BO4] (BIV) to [BO3] (BIII) happens when BaO and ZnO content x increases in the borate glass, resulting in fewer BIII-O-BIV bonds and more BIII-O-BIII bonds. At the same time, the diborate groups, which are found to be the predominant structural group of the glass with high B2O3 content, gradually changes into ring-type metaborate, pyro- and orthoborate groups. With increasing ZnO and BaO content x, the glass transition temperature (Tg) and the softening point (Tf) decreases, while linear expansion coefficient (α) increases, that comes from the weakening of the glass network.  相似文献   

18.
In this study, the phosphors (Sr1−x , Zn x )0.9(Al2−y , B y )O4 doped 10 mol % Eu2+, were prepared by combustion method as the fluorescent material for white light emitting diodes (WLEDs), performing as a light source. The luminescent properties were investigated by changing the combustion temperature, the boron concentration, and the ratio of Sr to Zn. The luminescence, crystallinity and particle morphology were investigated by using a luminescence spectrometer, X-ray diffractometer (XRD) and transmission electron microscopy (TEM), respectively. The highest intensity of Sr0.9(Al2−y , B y )O4: Eu0.12+ phosphor was achieved when the combustion temperature was 600° and the concentration of B3+ was 8 mol % of the aluminate. A new blue emission was observed when the high Zn concentration (x ⩾ 0.8), and this blue emission disappeared with the Zn concentration became lower than 0.8. The combustion method synthesized phosphor (Sr0.6, Zn0.4)0.9(Al1.92, B0.08)O4: Eu0.12+ showed 3.3 times improved emission intensity compared with that of the Sr0.9(Al1.92, B0.08)O4:Eu0.12+ phosphor under λ ex = 390 nm.   相似文献   

19.
In this paper, the Sr3Y2 (BO3)4:Eu3+ phosphor was synthesized by high temperature solid-state reaction method and the luminescence characteristics were investigated. The emission spectrum exhibits one strong red emission at 613nm corresponding to the electric dipole 5D0--7F2 transition of Eu3+ under 365nm excitation, this is because Eu3+ substituted for Y3+ occupied the non-centrosymmetric position in the crystal structure of Sr3Y2 (BO3)4. The excitation spectrum indicates that the phosphor can be effectively excited by ultraviolet (254nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu3+ concentration on the red emission of Sr3Y2 (BO3)4:Eu3+ was measured, the result shows that the emission intensities increase with increasing Eu3+ concentration, then decrease. The Commission Internationale del'Eclairage chromaticity (x, y) of Sr3Y2(BO3)4:Eu3+ phosphor is (0.640,0.355) at 15 mol% Eu3+.  相似文献   

20.
New multicomponent lead borate based glasses with various PbO/B2O3 weight ratio were prepared. The glass samples were analyzed in detail by using Raman and IR absorption spectroscopy. Optical properties of Eu3+ ions have been investigated in lead borate based systems, in which PbO/B2O3 weight ratios were changed from 1:2 to 8:1 in glass composition. The values of the phonon energy of the host and 5D0 lifetime of Eu3+ decrease, whereas absorption and emission intensities, as well as bonding parameter increase with increasing PbO concentration. Additionally, spectral lines are shifted in direction to the lower frequency region. Non-monotonic dependence of the fluorescence intensity ratio R (5D0-7F2/5D0-7F1) upon PbO/B2O3 content has been observed in contrast to bonding parameter that is also non-linear but monotonic. Some structural and spectroscopic aspects for Eu-doped lead borate based glasses are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号