首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
In this contribution we study the spectral stability problem for periodic traveling gravity‐capillary waves on a two‐dimensional fluid of infinite depth. We use a perturbative approach that computes the spectrum of the linearized water wave operator as an analytic function of the wave amplitude/slope. We extend the highly accurate method of Transformed Field Expansions to address surface tension in the presence of both simple and repeated eigenvalues, then numerically simulate the evolution of the spectrum as the wave amplitude is increased. We also calculate explicitly the first nonzero correction to the flat‐water spectrum, which we observe to accurately predict the stability (or instability) for all amplitudes within the disk of analyticity of the spectrum. With this observation in mind, the disk of analyticity of the flat state spectrum is numerically estimated as a function of the Bond number and the Bloch parameter, and compared to the value of the wave slope at the first finite amplitude eigenvalue collision.  相似文献   

2.
In this paper we consider the diffusion-controlled (small Péclet number) growth of an isolated, oblate-spheroidal (disk-shaped) bubble of constant eccentricity (aspect ratio) in a medium that actively produces the volatile substance via a distributed source, but does not itself offer significant resistance to growth. Oblate spheroidal bubbles are predicted to grow faster than spherical ones, due to the higher surface area to volume ratio; yet, bubbles of all eccentricities grow proportionally to the square root of time, as expected for a diffusive process. In the presence of a distributed source, however, the growth time becomes dependent on the square-root of the source strength, in the limit as the boundary forcing, i.e., the degree of super-saturation, becomes negligible. Furthermore, we demonstrate that the previously known spherical solution is contained within the more general spheroidal solution. In addition, we produced new expression to describe the growth of a disk in terms of the evolution of the radius of a volume-equivalent sphere and another simple expression relating the growth time of a disk to that of a sphere.  相似文献   

3.
Internal waves are generally accepted to be responsible for a large fraction of mixing in the deep ocean. Internal waves interact nonlinearly with one another, exchanging energy among themselves to create the background internal wave spectrum. The most important mechanism resulting in the transfer of energy from one wave to another is believed to be resonant triad interactions. In this paper we consider a large number of resonantly interacting triads in order to investigate the evolution of the energy spectrum due to solely resonant triad interactions. To this end we solve the evolution equations for a large number of resonant triads to determine the temporal evolution of the energy distribution among the various possible wave numbers and frequencies. Our model involves internal waves with frequencies spanning the range of possible frequencies, i.e., between a maximum of the buoyancy frequency N for horizontal wave vectors (vertical motion) to a minimum of the inertial frequency f for vertical wave vectors (horizontal motion) [two limiting cases]. Because of the inclusion of high-frequency waves we cannot make the hydrostatic approximation. We investigate the evolution of the wave’s amplitudes to predict the evolution of the internal wave energy spectrum.  相似文献   

4.
The purpose of this paper is to reveal the influence of dissipation on travelling wave solutions of the generalized Pochhammer–Chree equation with a dissipation term, and provides travelling wave solutions for this equation. Applying the theory of planar dynamical systems, we obtain ten global phase portraits of the dynamic system corresponding to this equation under various parameter conditions. Moreover, we present the relations between the properties of travelling wave solutions and the dissipation coefficient r of this equation. We find that a bounded travelling wave solution appears as a bell profile solitary wave solution or a periodic travelling wave solution when r= 0; a bounded travelling wave solution appears as a kink profile solitary wave solution when |r| > 0 is large; a bounded travelling wave solution appears as a damped oscillatory solution when |r| > 0 is small. Further, by using undetermined coefficient method, we get all possible bell profile solitary wave solutions and approximate damped oscillatory solutions for this equation. Error estimates indicate that the approximate solutions are meaningful.  相似文献   

5.
We develop a generalized conditional symmetry approach for the functional separation of variables in a nonlinear wave equation with a nonlinear wave speed. We use it to obtain a number of new (1+1)-dimensional nonlinear wave equations with variable wave speeds admitting a functionally separable solution. As a consequence, we obtain exact solutions of the resulting equations.  相似文献   

6.
We study the large time behavior of solutions of a one-dimensional hyperbolic relaxation system that may be written as a nonlinear damped wave equation. First, we prove the global existence of a unique solution and their decay properties for sufficiently small initial data. We also show that for some large initial data, solutions blow-up in finite time. For quadratic nonlinearities, we prove that the large time behavior of solutions is given by the fundamental solution of the viscous Burgers equation. In some other cases, the convection term is too weak and the large time behavior is given by the linear heat kernel.  相似文献   

7.
In this paper we derive an analytical solution of the one-dimensional Boussinesq equations, in the case of waves relatively long, with small amplitudes, in water of varying depth. To derive the analytical solution we first assume that the solution of the model has a prescribed wave form, and then we obtain the wave velocity, the wave number and the wave amplitude. Finally a specific application for some realistic values of wave parameters is given and a graphical presentation of the results is provided.   相似文献   

8.
In this paper we address the solution of three-dimensional heterogeneous Helmholtz problems discretized with compact fourth-order finite difference methods with application to acoustic waveform inversion in geophysics. In this setting, the numerical simulation of wave propagation phenomena requires the approximate solution of possibly very large linear systems of equations. We propose an iterative two-grid method where the coarse grid problem is solved inexactly. A single cycle of this method is used as a variable preconditioner for a flexible Krylov subspace method. Numerical results demonstrate the usefulness of the algorithm on a realistic three-dimensional application. The proposed numerical method allows us to solve wave propagation problems with single or multiple sources even at high frequencies on a reasonable number of cores of a distributed memory cluster.  相似文献   

9.
We consider the large time asymptotic behavior of the global solutions to the initial value problem for the nonlinear damped wave equation with slowly decaying initial data. When the initial data decay fast enough, it is known that the solution to this problem converges to the self-similar solution to the Burgers equation called a nonlinear diffusion wave, and its optimal asymptotic rate is obtained. In this paper, we focus on the case that the initial data decay more slowly than previous works and derive the corresponding asymptotic profile. Moreover, we investigate how the change of the decay rate of the initial values affect its asymptotic rate.  相似文献   

10.
This paper investigates a general variable coefficient (gVC) Burgers equation with linear damping term. We derive the Painlev\''{e} property of the equation under certain constraint condition of the coefficients. Then we obtain an auto-B\"{a}cklund transformation of this equation in terms of the Painlev\''{e} property. Finally, we find a large number of new explicit exact solutions of the equation. Especially, infinite explicit exact singular wave solutions are obtained for the first time. It is worth noting that these singular wave solutions will blow up on some lines or curves in the $(x,t)$ plane. These facts reflect the complexity of the structure of the solution of the gVC Burgers equation with linear damping term. It also reflects the complexity of nonlinear wave propagation in fluid from one aspect.  相似文献   

11.
From a biological point of view, we consider a prey-predator-type free diffusion fishery model with stage-structure and harvesting. First, we study the stability of the nonnegative constant equilibria. In particular, the effect of harvesting on the stability of equilibria is discussed and supported with numerical simulation. Then, employing the upper and lower solution method, we show that when the wave speed is large enough there exists a traveling wavefront connecting the zero solution to the positive equilibrium of the system. Numerical simulation is also carried out to illustrate the main result.  相似文献   

12.
This paper deals with the steady forced flow of a viscous, incompressible and electrically conducting fluid against a porous rotating disk when a uniform magnetic field acts perpendicular to the disk surface. For small suction the equations of motion are integrated numerically by Kármán-Pohlhausen method, but for large suction a series solution in the inverse powers of the suction parameter is obtained. The effects of disk porosity and magnetic field on the various flow parameters are discussed in detail.  相似文献   

13.
In this paper we show that when the Froude number is less than but close to 1 and the Bond number is greater than but close to 1/3 there exists a new solitary wave solution for surface waves on water with surface tension. An approximate expression for the new solitary wave solution, which satisfies a fourth order ordinary differential equation and represents a wave of depression is presented.  相似文献   

14.
This paper is concerned with the traveling wave solutions and the spreading speeds for a nonlocal dispersal equation with convolution-type crossing-monostable nonlinearity, which is motivated by an age-structured population model with time delay. We first prove the existence of traveling wave solution with critical wave speed c = c*. By introducing two auxiliary monotone birth functions and using a fluctuation method, we further show that the number c = c* is also the spreading speed of the corresponding initial value problem with compact support. Then, the nonexistence of traveling wave solutions for c < c* is established. Finally, by means of the (technical) weighted energy method, we prove that the traveling wave with large speed is exponentially stable, when the initial perturbation around the wave is relatively small in a weighted norm.  相似文献   

15.
In the paper the analytical solution of the partially linearized equations of motion of nearly horizontally rolling of a thick rigid disk on a perfectly rough horizontal plane under the action of gravity is given in terms of Whittaker functions. The solution is used to obtain the asymptotic solutions for a very small inclination angle, the study of unilateral contact between a disk and a plane and the study of disk colliding motion.   相似文献   

16.
Summary For the numerical solution of inverse Helmholtz problems the boundary value problem for a Helmholtz equation with spatially variable wave number has to be solved repeatedly. For large wave numbers this is a challenge. In the paper we reformulate the inverse problem as an initial value problem, and describe a marching scheme for the numerical computation that needs only n2 log n operations on an n × n grid. We derive stability and error estimates for the marching scheme. We show that the marching solution is close to the low-pass filtered true solution. We present numerical examples that demonstrate the efficacy of the marching scheme.  相似文献   

17.
In this paper, we are concerned with the Vlasov–Poisson–Boltzmann (VPB) system in three-dimensional spatial space without angular cutoff in a rectangular duct with or without physical boundary conditions. Near a local Maxwellian with macroscopic quantities given by rarefaction wave solution of one-dimensional compressible Euler equations, we establish the time-asymptotic stability of planar rarefaction wave solutions for the Cauchy problem to VPB system with periodic or specular-reflection boundary condition. In particular, we successfully introduce physical boundaries, namely, specular-reflection boundary, to the models describing wave patterns of kinetic equations. Moreover, we treat the non-cutoff collision kernel instead of the cutoff one. As a simplified model, we also consider the stability and large time behavior of the rarefaction wave solution for the Boltzmann equation.  相似文献   

18.
The problem of the diffraction of electromagnetic waves by asmall circular disk which is perfectly conducting along equiangularspirals is studied. The limiting cases where the spirals degenerateinto circles and radial segments are also discussed. Generalmodal excitation appropriate to the cylindrical geometry ofthe problem is assumed. The solution is expressed in the formof an integral representation, involving a pair of unknown functions,which is designed to satisfy Maxwell's equations, the continuityconditions outside the disk, the edge conditions and the radiationcondition. The remaining conditions, specifically, that thecurrent is directed along the spirals and that the total electricfield in the direction of the spirals vanishes, lead directlyto a pair of coupled integro-differential equations for theunknown functions. Formal power series solutions of this systemare obtained for small values of ka (k is the wave number, ais the radius of the disk). Further, these formal power seriessolutions can be rigorously justified in the case where theconductivity is along circles. The results are employed to derivethe leading terms in the power series expansions of the farfields, the total scattering cross-sections, the electric fieldon the disk, and the current density near the centre and edgeof the disk. For a normally incident plane wave, it is shownthat the scattering cross-sections of the perfectly conducting,circularly conducting and radially conducting disks are in theratio of 2: 1: 0.0039.  相似文献   

19.
A weakly nonlinear stability analysis is performed to search for the effects of compressibility on a mode of instability of the three-dimensional boundary layer flow due to a rotating disk. The motivation is to extend the stationary work of [ 1 ] (hereafter referred to as S90) to incorporate into the nonstationary mode so that it will be investigated whether the finite amplitude destabilization of the boundary layer is owing to this mode or the mode of S90. Therefore, the basic compressible flow obtained in the large Reynolds number limit is perturbed by disturbances that are nonlinear and also time dependent. In this connection, the effects of nonlinearity are explored allowing the finite amplitude growth of a disturbance close to the neutral location and thus, a finite amplitude equation governing the evolution of the nonlinear lower branch modes is obtained. The coefficients of this evolution equation clearly demonstrate that the nonlinearity is destabilizing for all the modes, the effect of which is higher for the nonstationary waves as compared to the stationary waves. Some modes particularly having positive frequency, regardless of the adiabatic or wall heating/cooling conditions, are always found to be unstable, which are apparently more important than those stationary modes determined in S90. The solution of the asymptotic amplitude equation reveals that compressibility as the local Mach number increases, has the influence of stabilization by requiring smaller initial amplitude of the disturbance for the laminar rotating disk boundary layer flow to become unstable. Apart from the already unstable positive frequency waves, perturbations with positive frequency are always seen to compete to lead the solution to unstable state before the negative frequency waves do. Also, cooling the surface of the disk will be apparently ineffective to suppress the instability mechanisms operating in this boundary layer flow.  相似文献   

20.
We consider the problem of two‐dimensional supersonic flow onto a solid wedge, or equivalently in a concave corner formed by two solid walls. For mild corners, there are two possible steady state solutions, one with a strong and one with a weak shock emanating from the corner. The weak shock is observed in supersonic flights. A longstanding natural conjecture is that the strong shock is unstable in some sense. We resolve this issue by showing that a sharp wedge will eventually produce weak shocks at the tip when accelerated to a supersonic speed. More precisely, we prove that for upstream state as initial data in the entire domain, the time‐dependent solution is self‐similar, with a weak shock at the tip of the wedge. We construct analytic solutions for self‐similar potential flow, both isothermal and isentropic with arbitrary γ ≥ 1. In the process of constructing the self‐similar solution, we develop a large number of theoretical tools for these elliptic regions. These tools allow us to establish large‐data results rather than a small perturbation. We show that the wave pattern persists as long as the weak shock is supersonic‐supersonic; when this is no longer true, numerics show a physical change of behavior. In addition, we obtain rather detailed information about the elliptic region, including analyticity as well as bounds for velocity components and shock tangents. © 2007 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号