首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermosolutal convection in a layer of Maxwellian viscoelastic fluid heated and soluted from below in porous medium is considered. The effects of uniform magnetic field and uniform rotation on the thermosolutal convection are also considered. For stationary convection, the Maxwellian viscoelastic fluid behaves like a Newtonian fluid. The sufficient conditions for the nonexistence of overstability are obtained. The critical Rayleigh number is found to increase with the increase in magnetic field, rotation and stable solute gradient.  相似文献   

2.
The thermosolutal instability of a plasma in porous medium is considered in the presence of finite Larmor radius effect. The finite Larmor radius, stable solute gradient and magnetic field introduce oscillatory modes in the systems which were nonexistent in their absence. For stationary convection, the finite Larmor radius and stable solute gradient have stabilizing effects on the thermosolutal instability in porous medium. In presence of finite Larmor radius effect, the medium permeability has a destabilizing (or stabilizing) effect and the magnetic field has a stabilizing (or destabilizing) effect under certain condition whereas in the absence of finite Larmor radius effect, the medium permeability and the magnetic field have destabilizing and stabilizing effects, respectively, on thermosolutal instability of a plasma in porous medium. The sufficient conditions for nonexistence of overstability are obtained.The financial assistance to Mr. Sunil in the form of Senior Research Fellowship of the Council of Scientific and Industrial Research (CSIR), New Delhi is gratefully acknowledged.  相似文献   

3.
The thermosolutal instability of a plasma is studied to include the effects of coriolis forces and the finiteness of ion Larmor Radius in the presence of transverse magnetic field. It is observed that the effect of rotation is destabilizing only in a typical case. However, the F. L. R. and stable solute gradient have stabilizing effects on stationary convection irrespective of the presence of coriolis forces.  相似文献   

4.
The thermosolutal convection in a layer of electrically conducting micropolar fluids heated and soluted from below in the presence of a uniform vertical magnetic field is considered. The presence of coupling between thermosolutal and micropolar effects may bring overstability in the system. The magnetic field also introduces oscillatory modes in the system and the Rayleigh number is found to increase with the increase in magnetic field. The possibility of oscillatory motions and the increase in Rayleigh number with increase in magnetic field is depicted graphically.  相似文献   

5.
Summary The thermosolutal instability of a rotating plasma in the presence of a uniform vertical magnetic field is studied to include the effects of Hall current. When the instability sets in as stationary convection for the case of no rotation, the Hall effects are found to be destabilizing. The stable solute gradient and rotation are found to have stabilizing effects. In the presence of rotation the Hall currents are found to be stabilizing forT 1>M(1+x)2. the case of overstability is also considered and it is shown that such solutions exist. The variation of the frequency with respect to the wave number at the neutral state is graphically shown. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

6.
The thermosolutal instability in porous medium in a partially ionized plasma in the presence of a uniform vertical magnetic field is considered. The presence of each, magnetic field and stable solute gradient, brings oscillatory modes which were nonexistent in their absence. The collisional effects may also bring in oscillatory modes. The stable solute gradient and magnetic field are found to have stabilizing effect whereas the medium permeability and collisional frequency have destabilizing effect on the thermosolutal instability in porous medium.  相似文献   

7.
On the basis of Brinkman model, the onset of double-diffusive (thermosolutal) convection with a reaction term in a horizontal sparsely packed porous media is studied using the normal mode analysis. The effects of Brinkman term, the reaction term, the normalized porosity ε and Lewis number Le on the Rayleigh number for stationary and oscillatory case are presented graphically. The Darcy number destabilize the system in case of both stationary and oscillatory mode. The effects of Lewis number and reaction term depend on the value of the values of solutal Rayleigh number. Furthermore, some results of Darcy model can be recovered in limit cases.  相似文献   

8.
The bio-thermal convection in a suspension containing gravitactic microorganisms saturated by a fluid is investigated within the framework of linear and nonlinear stability theory. Energy method is used for nonlinear stability analysis. Effect of Péclet number (swimming speed of microorganisms) and bioconvection Rayleigh number (concentration of microorganisms) on the stability of the system is analyzed numerically by using the Galerkin weighted residual method. The subcritical region of instability for faster swimmers is large as compared to slowly swimmers. Bioconvection Rayleigh number destabilizes the onset of bio- thermal convection and this effect is more predominant for high speed of microorganisms. The Péclet number, bioconvection Rayleigh number increase the size of cell.  相似文献   

9.
The effects of quantum correction on the Rayleigh–Taylor instability (RTI) in stratified plasma layer have been investigated in the presence of suspended particles. A general dispersion relation is obtained from the linearized set of quantum hydrodynamic (QHD) equations. Two particular cases of suspended particle parameters (f ? and α 0) with and without quantum corrections are analysed. The condition of RTI is derived while the stability of the system is discussed by applying Routh–Hurwitz (RH) criterion in the polynomial equation. The results show that, in the absence of quantum term, the relaxation frequency of the suspended particles has a destabilizing effect, while the mass concentration of the suspended particles has a stabilizing effect on the growth rates of RTI. In the presence of the quantum term, the relaxation frequency of the suspended particle yields to the stability behaviour on the growth rates of RTI.  相似文献   

10.
The present article provides an analytical solution of nonlinear heat transfer of an electrically conducting Couple stress liquid under a magnetic field modulation with an internal heat source. A weakly nonlinear theory is used to obtain the rate of heat transfer concerning the Nusselt number. A cubic Landau equation is derived in terms of amplitude of convection and solved by using Mathematica 8 software. The effect of various system parameters are obtained on nonlinear heat transfer which is discussed in detail by graphically. The Prandtl number, internal Rayleigh number, Couple stress parameter and magnetic Prandtl number destabilize the system while Chandrasekhar number has stabilizing effect. Hence, Couple stress parameter and internal Rayleigh number increase the rate of heat transfer.  相似文献   

11.
The effect of suspended particles on thermal instability is considered separately in Maxwellian and Oldroydian viscoelastic fluids in a porous medium. The principle of exchange of stabilities is found to hold well under a condition which is the same for Maxwellian as well as Oldroydian fluid. For stationary convection, both the Maxwellian and Oldroydian fluids behave like Newtonian fluid and the medium permeability and the suspended particles have destabilizing effects on the system. The sufficient conditions for the non-existence of overstability for both Maxwellian and Oldroydian viscoelastic fluids are also obtained.  相似文献   

12.
The onset of instability in a layer of dielectric micropolar fluid under the simultaneous action of an AC electric field and temperature gradient has been investigated. The dispersion relation has been derived and various critical values of non-dimensional Rayleigh number in the fluid layer have been determined. The influence of micropolar viscosity and electric Rayleigh number on the onset of convection has been analyzed. Thermal Rayleigh number has been computed for various values of electric Rayleigh number for the onset of instability. The stabilizing and destabilizing effects of electric Rayleigh number, micropolar viscosity and Prandtl number have been discussed.  相似文献   

13.
卢玉华  詹杰民 《物理学报》2006,55(9):4774-4782
研究了温盐双扩散系统的多组分格子Boltzmann方法.通过对二维方腔的温盐双扩散系统的数值模拟,检验了方法的可行性及有效性,所得到的结果与差分法结果符合良好,继而将此方法推广到三维,建立了三维温盐双扩散系统的格子Boltzmann方法,对三维方腔双扩散问题进行了模拟和分析,并与差分法模拟的结果进行了比较,结果令人满意.最后,分析了格子Boltzmann方法在模拟双扩散对流问题时存在的局限性. 关键词: 格子Boltzmann方法 温盐双扩散 Boussinesq近似 数值模拟  相似文献   

14.
利用线性稳定性方法研究了外加磁场对二元合金凝固过程中糊状层稳定性的影响,且模型同时考虑了温度场、浓度场和流动的耦合作用.利用计算得出的色散关系式分析了磁场对糊状层稳定性的影响,其中包括直接模式和振荡模式.给出了不同情况下外加磁场对糊状层稳定性的影响,发现磁洛伦兹力可以减小由浮力引起的失稳效应.振荡模式下外加磁场对糊状层产生稳定作用,但直接模式下外加磁场对糊状层的稳定作用具有不确定性.本文所给出结果为工业中利用外加磁场改善产品的质量提供了重要的理论参考.  相似文献   

15.
The onset of double-diffusive (thermosolutal) convection in horizontal porous layer saturated with an incompressible couple stress nanofluid saturated is studied with thermal conductivity and viscosity dependent on the nanoparticle volume fraction. To represent the momentum equation for porous media, a modified Darcy-Maxwell nanofluid model incorporating the effects of Brownian motion and thermophoresis has been used. The thermal energy equation includes regular diffusion and cross diffusion (Soret thermo-diffusion and Dufour diffuso-thermal) terms. A linear stability analysis depends on the normal mode technique and the onset criterion for stationary and oscillatory convection is derived analytically. The nonlinear theory based on the representation of the Fourier series method is applied to capture the behavior of heat and mass transfer. It is found that the couple stress parameter enhances the stability of the system in both the stationary and oscillatory convection modes. The viscosity ratio and conductivity ratio both enhance heat and mass transfer. Transient Nusselt number is found to be oscillatory when time is small. However, when time becomes very large, all the three transient Nusselt number values approach to their steady state values.  相似文献   

16.
We investigate the effect of fluctuations in thermal boundary layer on heat transfer in turbulent Rayleigh–Bénard convection for Prandtl number greater than one in the regime where the thermal dissipation rate is dominated by boundary layer contribution and in the presence of a large-scale circulating flow.  相似文献   

17.
This study investigates double-diffusive convection in a two-layer, salt-stratified solution destablized by lateral Keating and cooling. The two-wavelength holographic interferometry method was used to measure the transient temperature, concentration, and density distributions. The evolution of the two-layered system can be divided into three stages. In the first stage, the thermally driven convective layers form rapidly, and the existing diffusion layer adjusts itself into a thin interface by convection motion. In the second stage, a quasi-steady state is attained. The temperature distribution is S-type and the temperature difference across the diffusion region does not change much. The concentration distribution is uniform in the two fluid layers, but the concentration and density differences decrease linearly with time. When the interface becomes very thin, unstable finger-type convection appears. Finally, the interface is destroyed by the boundary layers at the side walls in the third stage. The interfacial Nusselt number and Sherwood number art found to increase with the thermal Rayleigh number, and the effect of the solutal Rayleigh number seems to be less significant. The dimemumless mixing time is found to correlate well with thermal and solutal Rayleigh numbers. Results from numerical simulation are demonstrated and compared with the experiments.  相似文献   

18.
Using direct numerical simulation, we investigate characteristics of coherent structures in Rayleigh–Bénard convection in a soft turbulence regime. The role of thermal plumes, essential structures in Rayleigh–Bénard convection, is studied by splitting flow regimes into thermal plume and background by investigating joint probability density function (PDF) of invariants of velocity gradient tensor. The contribution to thermal dissipation rate by these two regions is analysed separately. Through the joint PDF of invariants, we also examine the thermal effect on velocity structures.  相似文献   

19.
黑腔冷冻靶传热与自然对流的数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
黄鑫  彭述明  周晓松  余铭铭  尹剑  温成伟 《物理学报》2015,64(21):215201-215201
惯性约束聚变的设计要求在靶丸内形成均匀光滑的氘氚冰层, 靶丸周围的热环境对冰层的质量特别是低阶粗糙度有很大的影响. 本文对自主研发的黑腔冷冻靶实验装置中的热物理问题展开了数值模拟, 重点考察了黑腔冷冻靶的传热和流体力学特性. 通过参数分析得到了自然对流对靶丸温度均匀性产生影响的临界条件. 比较了黑腔不同布置朝向时的流场和温度分布, 结果显示黑腔水平布置时自然对流更加强烈, 造成的靶丸温度不均匀性也更大. 在此基础上, 讨论了消除自然对流影响的可能性, 结果发现仅当黑腔垂直布置时利用黑腔分区方法能够消除对流效应对靶丸温度不均匀性的影响而黑腔水平布置时不能消除. 研究结论对于实验中冷冻靶结构的设计、改进和实验的开展等具有指导意义.  相似文献   

20.
The onset of free thermal convection in complex fluids with background friction is theoretically investigated. It is shown that in the limit when friction prevails--opposite to the classic Rayleigh-Bénard case--the onset is determined by a renormalized Rayleigh number and also depends on the Prandtl number. Such convection should be observable in experiments with complex plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号