首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reaction of [([triple bond]SiO)Zr(CH(2)tBu)(3)] with H(2) at 150 degrees C leads to the hydrogenolysis of the zirconium-carbon bonds to form a very reactive hydride intermediate(s), which further reacts with the surrounding siloxane ligands present at the surface of this support to form mainly two different zirconium hydrides: [([triple bond]SiO)(3)Zr-H] (1a, 70-80%) and [([triple bond]SiO)(2)ZrH(2)] (1b, 20-30%) along with silicon hydrides, [([triple bond]SiO)(3)SiH] and [([triple bond]SiO)(2)SiH(2)]. Their structural identities were identified by (1)H DQ solid-state NMR spectroscopy as well as reactivity studies. These two species react with CO(2) and N(2)O to give, respectively, the corresponding formate [([triple bond]SiO)(4-x)Zr(O-C(=O)H)(x)] (2) and hydroxide complexes [([triple bond]SiO)(4-x)Zr(OH)(x)] (x = 1 or 2 for 3a and 3b, respectively) as major surface complexes.  相似文献   

2.
Silica-supported tantalum hydride, (SiO)2Ta-H (1), proves to be the first single-site catalyst for the direct non-oxidative coupling transformation of methane into ethane and hydrogen at moderate temperatures, with a high selectivity (>98%). The reaction likely involves the tantalum-methyl-methylidene species as a key intermediate, where the methyl ligand can migrate onto the tantalum-methylidene affording the tantalum-ethyl.  相似文献   

3.
4.
5.
Ring-closing alkene metatheses of trans,trans-(C6F5)(Ph2P-Z-CH=CH2)2Pt(C[triple bond]C)4Pt(Ph2P-Z-CH=CH2)2(C6F5) (Z = (CH2)9, (CH2)4O(CH2)2), followed by hydrogenation, give the title compounds; the former exhibits an exceptionally twisted conformation, and the latter establishes that functional groups can be incorporated into the flexible sp3 chain.  相似文献   

6.
Cp*(2)ZrH(2) (1) (Cp* = pentamethylcyclopentadienyl) reacts with primary, secondary, and tertiary monofluorinated aliphatic hydrocarbons to give Cp*(2)ZrHF (2) and/or Cp*(2)ZrF(2) and alkane quantitatively through a radical chain mechanism. The reactivity of monofluorinated aliphatic C-F bonds decreases in the order 1 degrees > 2 degrees > 3 degrees. The rate of hydrodefluorination was also greatly reduced with -CF(2)H and -CF(3) groups attached to the hydrocarbon. An atmosphere of H(2) is required to stabilize 1 against C-H activation of the Cp*-methyl groups and subsequent dimerization under the thermal conditions employed in these reactions. Reaction of 1 with fluorobenzene cleanly forms a mixture of Cp*(2)ZrHF, benzene, and Cp*(2)Zr(C(6)H(5))F. Detailed studies indicate that radicals are not involved in this aromatic C-F activation reaction and that dual hydrodefluorination pathways are operative. In one mechanism, hydridic attack by Cp*(2)ZrH(2) on the aromatic ring and fluoride abstraction is involved. In the second mechanism, an initial ortho C-H activation occurs, followed by beta-fluoride elimination to generate a benzyne complex, which then inserts into the zirconium-hydride bond.  相似文献   

7.
Treatment of OsX2(PPh3)3 (X = Cl, Br) with HCCCH(OH)CCH in THF produces OsX2(CH=C(PPh3)CH(OH)CCH)(PPh3)2, which reacts with PPh3 to give osmabenzenes [Os(CHC(PPh3)CHC(PPh3)CH)X2(PPh3)2]+.  相似文献   

8.
9.
A novel series of luminescent heterodecanuclear mixed-metal alkynyl complexes, [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(N--N)(CO)3]4](PF6)2, (N--N = tBu2bpy, Me2bpy, phen, Br2phen), have been successfully synthesized; the X-ray crystal structures of [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(Me2bpy)(CO)3]4](PF6)2 and [Ag6(mu-dppm)4[mu3-C[triple bond]CC[triple bond]C-Re(Br2phen)(CO)3]4](PF6)2 have also been determined.  相似文献   

10.
Two novel isopropylamine‐templated uranyl chromates, [(CH3)2CHNH3]3[(UO2)3(CrO4)2O(OH)3] ( 1 ) and [(CH3)2CHNH3]2[(UO2)2(CrO4)3(H2O)] ( 2 ) were prepared by hydrothermal method at 100 °C. The compounds were characterized by electron microprobe analysis and X‐ray diffraction crystal structure analysis [ 1 : trigonal, P31m, a = 9.646(4), c = 8.469(4) Å, V = 682.4(5) Å3; 2 : monoclinic, P21/c, a = 11.309(3), b = 11.465(3), c = 17.055(5) Å, β = 99.150(6)°, V = 2183.2(11) Å3]. The structure of 1 is based upon trimers of uranyl bipyramids interlinked by CrO4 tetrahedra to form [(UO2)3(CrO4)2O(OH)3]3– layers, whereas, in the structure of 2 , UO7 and UO6(H2O) pentagonal bipyramids are linked through CrO4 tetrahedra into the [(UO2)2(CrO4)3(H2O)]2– layers. The structures show many similarities to related uranyl selenate compounds, thus providing additional data on similarities and differences between uranyl sulfates, chromates, selenates, and molybdates.  相似文献   

11.
The synthesis, isolation and characterisation are reported for a series of terminal aryl/heteroaryl bis(butadiynes) (HC[triple bond]C-C[triple bond]C-Ar-C[triple bond]C-C[triple bond]CH) 4a-e including the X-ray molecular structure of the 2,5-pyridylene derivative 4d; compound 4a and the mono-protected analogue [HC[triple bond]C-C[triple bond]C-Ar-C[triple bond]C-C[triple bond]C-C(OH)Me2] 5a serve as convenient precursors for the synthesis of highly-conjugated oligo(arylenebutadiynylene)s.  相似文献   

12.
13.
Treatment of NaW2Cl7(THF)5 with 4 equiv of (t)Bu3SiNHLi afforded the C2 W(III) dimer [((t)Bu3SiNH)2WCl]2 (1, d(W triple bond W) = 2.337(2) A), which is a rare, primary amide M2X4Y2 species. Its degradation provided evidence of NH bond activation by the ditungsten bond. Addition of 2 equiv of (t)Bu3SiNHLi or TlOSi(t)Bu3 to 1 yielded H2 and hydride ((t)Bu3SiN)2((t)Bu3SiNH)WH (2, d(WH) = 1.67(3) A) or ((t)Bu3SiN)2((t)Bu3SiO)WH (3). Thermolysis (60 degrees C, 16 h) of 1 in py gave ((t)Bu3SiN)2WHCl(py) (4-py, 40-50%), ((t)Bu3SiN)2WCl2(py) (6-py, 10%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)py2 (5-py2, 5%), whereas thermolysis in DME produced ((t)Bu3SiN)2WCl(OMe) (7, 30%), ((t)Bu3SiN)2WCl2 (6, 20%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)DME (5-DME, 3%). Compound 7 was independently produced via thermolysis of 4-py and DME (-MeOEt, -py), and THF and ethylene oxide addition to hydride 2 gave ((t)Bu3SiN)2((t)Bu3SiNH)WO(n)Bu (8) and ((t)Bu3SiN)2((t)Bu3SiNH)WOEt (9), respectively. Dichloride 6 was isolated from SnCl4 treatment of 1 with the loss of H2. Sequential NH bond activations by the W2 core lead to "((t)Bu3SiN)2WHCl" (4) and subsequent thermal degradation products. Thermolysis of 1 in the presence of H2C=CH(t)Bu and PhC triple bond CPh trapped 4 and generated ((t)Bu3SiN)2W((neo)Hex)Cl (10) and a approximately 6:1 mixture of ((t)Bu3SiN)2WCl(cis-CPh=CPhH) (11-cis) and ((t)Bu(3)SiN)2WCl(trans-CPh=CPhH) (11-trans), respectively. Thermolysis of the latter mixture afforded ((t)Bu3SiNH)((t)Bu3SiN)WCl(eta2-PhCCPh) (12) as the major constituent. Alkylation of 1 with MeMgBr produced ((t)Bu3SiN)2W(CH3)2 (13), as did addition of 2 equiv of MeMgBr to 6. X-ray crystal structure determinations of 1, 2, 5-py2, 6-py, 11-trans, and 12 confirmed spectroscopic identifications. A general mechanism that features a sequence of NH activations to generate 4, followed by chloride metathesis, olefin insertion, etc., explains the formation of all products.  相似文献   

14.
Reaction of laser-ablated Zr with CH(4) ((13)CH(4), CD(4), and CH(2)D(2)) in excess neon during condensation at 5 K forms CH(2)=ZrH(2), the simplest alkylidene hydride complex, which is identified by infrared absorptions at 1581.0, 1546.2, 757.0, and 634.5 cm(-)(1). Density functional theory electronic structure calculations using a large basis set with polarization functions predict a C(1) symmetry structure with agostic C-H- - -Zr bonding and distance of 2.300 A. Identification of the agostic CH(2)=ZrH(2) methylidene complex is confirmed by an excellent match of calculated and observed isotopic frequencies particularly for the four unique CHD=ZrHD isotopic modifications. The analogous reactions in excess argon give two persistent photoreversible matrix configurations for CH(2)=ZrH(2). Finally, methane activation by CH(2)=ZrH(2) gives the new (CH(3))(2)ZrH(2) molecule.  相似文献   

15.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

16.
During attempts to synthesize lanthanoid(III) fluoride oxoselenates(IV) with the simple composition MF[SeO3], not only Pr3F[SeO3]4, but also Pr5F[SiO4]2[SeO3]3 appeared as pale green crystalline by‐products in the case of praseodymium. Pr5F[SiO4]2[SeO3]3 crystallizes triclinically in space group P$\bar{1}$ (no. 2) with a = 701.14(5), b = 982.68(7), c = 1286.79(9) pm, α = 70.552(3), β = 76.904(3), γ = 69.417(3)° and Z = 2. The five crystallographically different Pr3+ cations on the general positions 2i show coordination numbers of eight and nine. [(Pr1)O8]13– and [(Pr2)O8]13– polyhedra are connected to$\bar{1}$ {[(Pr1, 2)2O12]18–} chains along the [100] direction. [(Pr3)O7F]12–, [(Pr4)O8F]14– and [(Pr4)O8F]14– polyhedra generate [F(Pr3, 4, 5)3O19]30– units about their central F anion in triangular Pr3+ coordination. These units form $\bar{1}$ {[F(Pr3, 4, 5)3O16]24–} strands, again running parallel to [100]. Their alternating connection with the $\bar{1}$ {[(Pr1, 2)2O12]18–} chains results in $\bar{1}$ {[Pr5O20F]26–} sheets parallel to the (001) plane. Like in the already known related compound Er3F[SiO4][SeO3]2, a three‐dimensional network $\bar{1}$ {[Pr5O17F]20–} is achieved without the contribution of both the tetravalent silicon and selenium components. However, two Si4+ and three Se4+ cations forming tetrahedral [SiO4]4– and ψ1‐tetrahedral [SeO3]2– units with all O2– anions guarantee the charge balance. The formation of Pr5F[SiO4]2[SeO3]3 was observed when praseodymium sesquioxide (Pr2O3: in‐situ produced from Pr and Pr6O11 in a molar ratio of 3/11:4/11),praseodymium trifluoride (PrF3) and selenium dioxide (SeO2) in 1:1:3 molar ratios were reacted with CsBr as fluxing agent for five days at 750 °C in evacuated fused silica (SiO2) ampoules.  相似文献   

17.
Liu FC  Chen KY  Chen JH  Lee GH  Peng SM 《Inorganic chemistry》2003,42(5):1758-1763
In reactions of zirconocene dichloride, Cp(2)ZrCl(2), with 1 equiv and an excess amount of LiBH(3)CH(3), the methyltrihydroborate complexes, Cp(2)ZrCl[(mu-H)(2)BHCH(3)], 1, and Cp(2)Zr[(mu-H)(2)BHCH(3)](2), 2, were isolated. The reaction of titanocene dichloride, Cp(2)TiCl(2), with an excess amount of LiBH(3)CH(3) produced the monosubstituted methyltrihydroborate complex, Cp(2)Ti[(mu-H)(2)BHCH(3)], 3. The titanium was reduced from Ti(IV) to Ti(III), producing a 17-electron, paramagnetic titanocene complex. Under a dynamic vacuum at room temperature, compound 2 decomposed and produced the zirconium hydride compound Cp(2)ZrH[(mu-H)(2)BHCH(3)]. Single crystal X-ray structures of 1, 2, and 3 were determined. Crystal data for 1: space group P2(1)/c, a = 13.7921(3) A, b = 13.4227(3) A, c = 13.0868(3) A, beta = 91.6448(12) degrees, Z = 8. Crystal data for 2: space group Pna2(1), a = 15.2949(4) A, b = 9.3417(2) A, c = 9.3211(2) A, Z = 4. Crystal data for 3: space group Fmm2, a = 9.1795(3) A, b = 13.0993(5) A, c = 8.8520(3) A, Z = 4.  相似文献   

18.
This paper describes the characterization of low molecular weight components of four materials using electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). The materials in the current study are [(ViMe2SiO1/2)x(PhSiO3/2)y(SiO4/2)z] (MTQ), [(ViMe2SiO1/2)x(SiO4/2)y] (MQ), and [(SiO4/2)x(HO1/2)y(tBuO1/2)z] (Q) silsesquioxanes. Accurate mass measurements coupled with knowledge of resin chemistry afforded siloxane composition determination that was used to propose specific structures for the oligomers. Branched or linear (TnQmMn+2m+2), and monocyclic (TnQmMn+2m) structures are predominant structures for the low molecular weight species in MTQ. For MQ and Q, more condensed structures, such as partially opened cage structures (QmM2m?6 and QmM2m?8), were identified. The differences between MQ, Q, and MTQ are likely attributed to differences in intrinsic structure and reactivity of T and Q building blocks. The structural information obtained for these oligomeric species will ultimately provide a better understanding of new resin materials and their associated physical properties.  相似文献   

19.
Treatment of CrCl2(THF)2 with NaOSitBu3 afforded the butterfly dimer [(tBu3SiO)Cr]2(mu-OSitBu3)2 (1(2)), whose d(CrCr) of 2.658(31) A and magnetism were indicative of strong antiferromagnetic coupling. A Boltzmann distribution of low-energy 1A1, 3B1, 5A1, 7B1, and 9A1 states obtained from calculations on [(HO)2Cr]2(muOH)2 (1'(2)) were used to provide a reasonable fit of the mu(eff) vs T data. Cleavage of 1(2) with various L (L = 4-picoline, p-tolunitrile, tBuCN, tBuNC, Ph2CO, and PMe3) generated (tBu3SiO)2CrL2 (1-L2). The dimer was oxidatively severed by Ph2CN2 to give (tBu3SiO)2Cr(N2CPh2)2 (2) and by RN3 at 23 degrees C to afford (silox)2Cr=NR (3-R) for bulky R (adamantyl (Ad), 2,6-iPr2-C6H3, 2,4,6-Me3-C6H2 = Mes, 2,6-Ph2-C6H3) and (tBu3SiO)2Cr(=NR)2 (4-R) for smaller substituents (R = 1-Naph, 2-Anth). X-ray structural studies were conducted on 1(2), square planar 1-(OCPh2)2, pseudo-Td 2 and pseudo-trigonal 3-(2,6-Ph2-C6H3), whose S = 1 ground state was discussed on the basis of calculations of (H3SiO)2Cr=NPh (3' '-Ph).  相似文献   

20.
The zirconium nitrate complexes (NO2)[Zr(NO3)3(H2O)3]2(NO3)3 (1), Cs[Zr(NO3)5] ((2), (NH4)[Zr(NO3)5](HNO3) (3), and (NO2)0.23(NO)0.77[Zr(NO3)5] ((4) were prepared by crystallization from nitric acid solutions in the presence of H2SO4 or P2O5. The complexes were characterized by X-ray diffraction. The crystal structure of 1 consists of nitrate anions, nitronium cations, and [Zr(NO3)3(H2O)3]+ complex cations in which the ZrIV atom is coordinated by three water molecules and three bidentate nitrate groups. The coordination polyhedron of the ZrIV atom is a tricapped trigonal prism formed by nine oxygen atoms. The island structures of 2 and 3 contain [Zr(NO3)5]? anions and Cs+ or NH4 + cations, respectively. In addition, complex 3 contains HNO3 molecules. Complex 4 differs from (NO2)[Zr(NO3)5] in that three-fourth of the nitronium cations in 4 are replaced by nitrosonium cations NO+, resulting in a decrease in the unit cell parameters. In the [Zr(NO3)5]? anion involved in complexes 2–4, the ZrIV atom is coordinated by five bidentate nitrate groups and has an unusually high coordination number of 10. The coordination polyhedron is a bicapped square antiprism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号