首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents large eddy simulations of co-annular swirling jets into an open domain. In each of the annuli a passive scalar is introduced and its transport is computed. If the exit of the pilot jet is retracted strong coherent flow structures are generated which substantially impact on the transport and mixing of the scalars. Average and instantaneous fields are discussed to address this issue. A conditional averaging technique is devised and applied to velocity and scalars. This allows to quantify the impact of the coherent structures on the mixing process.  相似文献   

2.
Measurements of mean velocity components, turbulent intensity, and Reynolds shear stress are presented in a turbulent lifted H2/N2 jet flame as well as non-reacting air jet issuing into a vitiated co-flow by laser doppler velocimetry (LDV) technique. The objectives of this paper are to obtain a velocity data base missing in the previous experiment data of the Dibble burner and so provide initial and flow field data for evaluating the validity of various numerical codes describing the turbulent partially premixed flames on this burner. It is found that the potential core is shortened due to the high ratio of jet density to co-flow density in the non-reacting cases. However, the existence of flame suppressed turbulence in the upstream region of the jet dominates the length of potential core in the reacting cases. At the centreline, the normalized axial velocities in the reacting cases are higher than the non-reacting cases, and the relative turbulent intensities of the reacting flow are smaller than in the non-reacting flow, where a self-preserving behaviour for the relative turbulent intensities exists at the downstream region. The profiles of mean axial velocity in the lifted flame distribute between the non-reacting jet and non-premixed flame both in the axial and radial distributions. The radial distributions of turbulent kinetic energy in the lifted flames exhibit a change in distributions indicating the difference of stabilisation mechanisms of the two lifted flame. The experimental results presented will guide the development of an improved modelling for such flames.  相似文献   

3.
Experimental investigations of the influence of streamwise streaky structures on turbulization of a circular laminar jet are described. The qualitative characteristics of jet evolution are studied by smoke visualization of the flow pattern in the jet and by filming the transverse and longitudinal sections of the jet illuminated by the laser sheet with image stroboscopy. It is shown that the streaky structures can be generated directly at the nozzle exit, and their interaction with the Kelvin–Helmholtz ring vortices leads to emergence of azimuthal beams ( structures) by a mechanism similar to threedimensional distortion of the twodimensional Tollmien–Schlichting wave at the nonlinear stage of the classical transition in nearwall flows. The effect of the jetexhaustion velocity and acoustic action on jet turbulization is considered.  相似文献   

4.
A linear eddy model for subgrid mixing and combustion has been coupled to a large eddy simulation of the turbulent nonpremixed piloted jet flame (Sandia Flame D). For the combustion reaction, simplified, single-step, irreversible, Arrhenius kinetics are used. The large scale and the subgrid structure of the flow are compared with experimental observations and, where appropriate, with a flamelet model of the flame. The main objective of this work is to demonstrate the feasibility of the LES-LEM approach for determining the structure of the subgrid scalar dissipation rate and the turbulence-chemistry interactions. The results for the large- and subgrid-scale structure of the flow show a reasonable agreement with the experimental observations.  相似文献   

5.
Large-Eddy Simulation of a Turbulent Hydrogen Diffusion Flame   总被引:1,自引:0,他引:1  
In this work a large-eddy simulation (LES) of a turbulent hydrogen jet diffusion flame is presented. The numerical method handles fluctuations of density in space and in time, but assumes density to be independent of pressure (incompressibility). The chemical composition of the fluid is described by solving the filtered transport equation for mixture fraction f. Density, viscosity and temperature are evaluated assuming chemical equilibrium. To account for sub-grid fluctuations of f, its sub-grid distribution is presumed to have the shape of a β-function. The results of the simulation are discussed extensively. The influence of inlet boundary conditions is addressed and radial profiles at different axial positions are shown for a complete set of one-point statistical data. Agreement of numerical results and experimental data is very good. Furthermore, a comparison of Reynolds- and Favre-averages is done and energy spectra at different locations in the flame are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The turbulent structure of a submerged axisymmetric impinging jet containing small gas bubbles is studied experimentally under conditions of periodic external excitation. On the basis of measuring the surface-friction pulsatory component in the jet impinging on an obstacle, the effect of the suppression of large-scale eddies at large gas volume fractions is registered. The conditions of resonant growth of coherent structures and the suppression of wide-band turbulence are determined for both the single-phase and the two-phase impinging jet. An analysis of the development of different pulsatory friction components in the impinging-jet gradient region is presented.  相似文献   

7.
Complex interactions between fluid dynamics and combustion processes areamong the topics most often undertaken in recent years. The free roundflames dominated by large-scale vortex structures seem to be a veryinteresting type of flow as indicated by the many experimental resultsavailable in literature. The so-called outer coherent structures whichare believed to be generated as a result of buoyancy-driven instabilitywere experimentally investigated by means of laser Doppler anemometry.The results of spectral analysis of fluctuating velocity componentsrevealed the regular oscillations of the flow field with well-defineddiscrete frequencies depending upon the mixture composition. Theexternal excitation of coherent structures at a frequency matching theirnatural shedding frequency allowed the construction of velocity vectormaps of organised vorticity. From the results obtained one may statethat the coherent vortices are located in the outer part of flame withthe trajectory of their centres moving far from the flame front. Theirlocation and very large sizes (comparable with the flow width) suggesttheir important role in mixing and, especially, in the entrainmentprocesses which are the essential in combustion systems.The dimensionalanalysis taking into account the characteristic parameters of vorticesand thermal structure of the flame suggests that buoyancy forces havesignificant impact on organised vorticity and can be considered asresponsible for its origin.  相似文献   

8.
Large-eddy simulations have been coupled with a conservative formulation of the conditional moment closure (CMC) approach for the computation of a turbulent, partially-premixed dimethyl-ether jet flame. Two different numerical setups and 3 different detailed chemical mechanisms were investigated. The results are compared with measurements of velocity, temperature, and major and intermediate species. The general agreement between simulations and experiments is very good, and differences between the different mechanisms are limited to the predicted concentrations of intermediates only. Larger differences can be observed if the CMC grid size is reduced. This is due to reduced averaging effects on the conditionally averaged dissipation rates that allow to better capture high dissipation events that lead to larger deviations from a fully burning solution. A high CMC resolution provides excellent agreement with experiments throughout the flame and the results demonstrate CMC’s capability to accurately predict turbulence-chemistry interactions in partially-premixed flames involving complex chemistry.  相似文献   

9.
Manipulation of large-scale vortical structures and associated mixing in a methane-air coaxial jet is carried out by using miniature jet actuators installed on the inner surface of the annular nozzle. The periodic radial miniature jet injections are achieved with a rapid-response servo-valve. The spatio-temporal primary jet structures are investigated through phase-locked 2C-PIV (2 Component Particle Image Velocimetry) and stereoscopic-PIV. It is found that intense ring-like vortices are produced perfectly in phase with the periodic miniature jet injections regardless of the valve-driven frequency fv examined. When the Strouhal number Stv, which is defined with fv, is larger than unity, the ring-like vortices are densely formed and thus methane/air mixing is prompted with low periodic fluctuation. The diameter of the vortices becomes small as Stv is increased, so that the transport range of the inner methane and outer air fluids can be controlled by changing Stv. In addition, the evolution of counter-rotating vortex pair is also observed in the cross-sectional plane. These streamwise vortices are directly formed as a result of the radial miniature jet injection, which leads to entrainment of the ambient fluid near the primary jet shear layer, and they also contribute to the mixing enhancement. Moreover, it is demonstrated that coaxial jet flame characteristics such as carbon monoxide (CO) emission and flame holding can be drastically improved under different equivalence ratios by the present jet control scheme.  相似文献   

10.
Flame propagation in a plane channel with the formation of tulip and cellular configurations of the combustion front is simulated. The near-flame flow structure and the thermal flow structure are determined. An analogy is found between the tulip configuration and flame inflections at cell interfaces.  相似文献   

11.
Flame Surface Density in Turbulent Premixed V-Flame with Buoyancy   总被引:1,自引:0,他引:1  
A fractional step numerical model is established for turbulent premixed combustion with buoyancy. The flame front propagation is described by the level-set method. Simulated results without buoyancy have been previously validated with available experimental data on a premixed V-flame. A new formula is presented to fit the flame surface density with respect to the reaction progress variable in a turbulent premixed V-flame. By numerical simulations, dynamical behaviour of the flame under the interaction of turbulence, exothermicity and buoyancy are investigated.  相似文献   

12.
A large eddy simulation (LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model and the Lagrangian dynamic subgrid-scale model are employed and tested. The calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structures behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent behavior behind the flame holder is analyzed by visualizing the sectional views of vortical structure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In recent years, the NO x emissions of heavy duty gas turbine burners have been significantly reduced by introducing premixed combustion. These highly premixed burners are known to be prone to combustion oscillations. In this paper, investigations of a single model gas turbine burner are reported focusing on thermo-acoustic instabilities and their interaction with the periodic fluctuations of the velocity and pressure. Phase-locked optical measurement techniques such as LDA and LIF gave insight into the mechanisms.Detailed investigations of a gas turbine combustor rig revealed that the combustor as well as the air plenum oscillate in Helmholtz modes. These instabilities could be attributed to the phase lag of the pressure oscillations between the air plenum and the combustor, which causes an acceleration and deceleration of the air flow through the burner and, therefore, alternating patterns of fuel rich and lean bubbles. When these bubbles reach the reaction zone, density fluctuations are generated which in turn lead to velocity fluctuations and, hence, keep up the pressure oscillations.With increasing the equivalence ratio strong combustion oscillations could be identified at the same frequency. Similarly as with weak oscillations, Helmholtz mode pressure fluctuations are present but the resulting velocity fluctuations in the combustor can be described as a pumping motion of the flow. By the velocity fluctuations the swirl stabilization of the flame is disturbed. At the same time, the oscillating pressure inside the combustor reaches its minimum value. Shortly after the flame expands again, the pressure increases inside the combustor. This phenomenon which is triggered by the pressure oscillations inside the air plenum seems to be the basic mechanism of the flame instability and leads to a significant increase of the pressure amplitudes.  相似文献   

14.
The modelling of conditional scalar dissipation in locally self-similar turbulent reacting jets is considered. The streamwise dependence in the transport equation of the conserved scalar pdf is represented by a function solely dependent on centreline mixture fraction. This procedure provides a simple model suitable for non-homogeneous flows and ensures positive values for conditional scalar dissipation. It has been tested in pure hydrogen-air jet diffusion flames using a Conditional Moment Closure method with detailed 12species, 23 reactions chemistry. The calculations show good agreement of the averaged scalar dissipation with reference values and the model proves to be superior to previous models based on homogeneous flows if the distribution of the conditional scalar dissipation in mixture fraction space is compared with experimental results. A dependence of NO predictions on the model of conditional scalar dissipation can be observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Swirling combustion is widely applied in various applications such as gas turbines, utility boilersor waste incinerators. This article contributes to the ongoing research by providing experimentaldata that are gathered in the mixing zone of a lifted swirling premixed natural gas flame. Theobjective of this paper is fivefold: (1) to introduce the lifted swirling flame featuring lowNO x emissions (2) to provide experimental data such as major species distributions, temperature and streamlines of the flow pattern, (3) to report on velocity bias in probability density function (PDF) distributions and to present PDF sequences of velocities in medium scale swirling flows, (4) to make an assessment on the local small-scale turbulence that is present in the swirling mixinglayer and (5) to provide new experimental data for model verification and development.The PDFs are corrected in order to compensate for the velocity bias phenomenon, which is typicalfor randomly sampled LDA data. Sequences of axial PDF data are presented and measurement locationsof interest are selected to look at the PDF characteristics of the internal and externalrecirculation zones, the mixing layer and the onset of the reacting flow into detail. The mixinglayer PDFs covered a wide velocity range and revealed bimodality; even the concept ofmulti-modality is suggested and explored. Analysis showed that a sum of two Gaussian distributionscan accurately envelop the experimental PDFs. The reason for this broadband turbulence behavior isto be found in combination of precessing and flapping motion of the flow structures, and also incombustion generated instabilities of the lifted flame. As a result, the flame brush is wide (largescale motion) and the mixing (small-scale turbulence) flattens any high temperatures in thecombustion process.The multi-scale turbulence concept is subsequently used to make anassessment of the local turbulence characteristics in the mixing layer.The idea is that the PDFs capture both contributions of the flow-inherent fine grain turbulence (u l ) which is superposed on slowlarge scale fluctuating structures. It is this u l that will be of interest in continued research on the classification of the lifted flame into acombustion regime diagram (e.g. Borghi diagram). Finally, the bimodalitycharacter in reacting flows and the prediction of large-scale structuresmay be a challenge for LES researchers.  相似文献   

16.
This paper presents the results of a parametric study concerning the phenomenon of liftoff of a nonpremixed jet flame. The dependence of liftoff height on jet exit velocity and coflow velocity is described. It is shown that lifted flames become less sensitive to jet exit velocity as the stabilization point recedes from the burner exit. The results reveal that in cases of extreme liftoff height, increases in jet exit velocity with a constant coflow cause some ethylene flames to stabilize closer to the burner. The success of current theories on lifted flame stabilization in comparison to the experimental results of this study are assessed. The existence of multiple regimes for flame stabilization, incorporating aspects of both premixed and nonpremixed combustion, is proposed.  相似文献   

17.
The effects of swirl and downstream wall confinement on an annular nonpremixed flame were investigated using direct numerical simulation (DNS). Fully three-dimensional parallel DNS was performed employing high-order numerical methods and high-fidelity boundary conditions to solve governing equations for variable-density flow and finite-rate Arrhenius chemistry. Three swirl numbers have been examined: 0 (without swirl), 0.4 and 0.8, while the effects of downstream wall confinement have been examined for swirl numbers 0 and 0.4. Results have been presented in terms of instantaneous and time-averaged flow quantities, which have also been analysed using energy spectra and proper orthogonal decomposition (POD). Effects of swirl on the fluid dynamic behaviour of the annular nonpremixed flame were found to be significant. The fluid dynamic behaviour of the flame is greatly affected by the interaction between the geometrical recirculation zone (GRZ) near the jet nozzle exit due to the annular configuration, the central recirculation zone (CRZ) associated with swirl, the unsteady vortical structures in the jet column due to the shear instability, and the downstream wall confinement. Depending on the degree of swirl, the GRZ near the burner mouth and the CRZ may co-exist or one zone may be overwhelmed by another. At a moderate swirl number, the co-existence leads to a flame with strong reaction attached to the burner mouth; while at a high swirl number, the CRZ dominates over the GRZ. The precessing vortex core was observed to exist in the swirling flow fields. The Nusselt number distribution of the annular impinging flames differs from that of round impinging jets. The POD analysis revealed that wall effects on the flow field are mainly associated with the higher mode numbers.  相似文献   

18.
Current emphasis in non-premixed turbulent combustion research is focused on the effects of hydrodynamic unsteadiness and transient effects in these flames. To address these effects, measurements of the temperature field in unsteady propane-air flames were made using planar laser-induced fluorescence of the hydroxyl radical to ascertain the effect of fluctuating hydrodynamics on flame temperature. Planar temperature measurements were made at four temporal locations within the 25 Hz velocity fluctuation as a function of initial steady strain rate and forcing amplitude. Results show that temperature in the propane flame is rather insensitive to initial strain rate for these weakly strained flames due to the balance between decreased heat release rate and reduced radiative losses resulting from diminished soot production as the strain rate is increased. The temperature is significantly influenced by the imposed velocity oscillation, however, which causes large fluctuations in the instantaneous strain rate. A decoupling of peak flame temperature and maximum PAH and excited CH concentration indicates significant transient effects resulting from the unsteady flow field even at these low oscillation frequencies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Transitional jet diffusion flames provide the link between dynamics of laminar and turbulent flames. In this study, instabilities and their interaction with the flow structure are explored in a transitional jet diffusion flame, with focus on isolating buoyancy effects. Experiments are conducted in hydrogen flames with fuel jet Reynolds number of up to 2,200 and average jet velocity of up to 54 m/s. Since the fuel jet is laminar at the injector exit, the transition from laminar to turbulent flame occurs by the hydrodynamic instabilities in the shear layer of fuel jet. The instabilities and the flow structures are visualized and quantified by the rainbow schlieren deflectometry technique coupled with a high-speed imaging system. The schlieren images acquired at 2,000 frames per second allowed exposure time of 23 μs with spatial resolution of 0.4 mm. Results identify a hitherto unknown secondary instability in the flame surface, provide explanation for the observed intermittency in the breakpoint length, show coherent vortical structures downstream of the flame breakpoint, and illustrate gradual breakdown of coherent structures into small-scale random structures in the far field turbulent region.  相似文献   

20.
The regular and random mixing structures in a turbulent diffusion flame were investigated using the quantitative, dynamic crossed-beam schlieren method. Evidence was found close to the nozzle relating to the vortexlike structure of eddies surrounding the central fuel jet flow. The observations also make possible resolution of turbulent intensity, scales, convection, and spectra within the diffusion flame without the use of seeding or intrusion of measuring probes. It is found that length scales and other turbulence parameters in the diffusion flame progressively revert to values similar to those expected and observed in scalar passive mixing as the combustion reaction intensity reduces with axial distance from the nozzle system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号