首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five lipases were screened (Thermomyces lanuginosus free and immobilized forms, Candida antarctica B, Candida rugosa, Aspergillus niger, and Rhizomucor miehei) to study their ability to produce monoglycerides (MG) and diglycerides (DG) through enzymatic glycerolysis of soybean oil. Lipase from C. antarctica was further studied to verify the enzyme load (wt% of oil mass), the molar ratio glycerol/oil, and the water content (wt% of glycerol) on the glycerolysis reaction. The best DG and MG productions were in the range 45–48% and 28–30% (w/w, based on the total oil), respectively. Using immobilized lipases, the amount of free fatty acids (FFA) produced was about 5%. However, the amount of FFA produced when using free lipases, with 3.5% extra water in the system, is equivalent to the MG yield, about 23%. The extra water content provides a competition between hydrolysis and glycerolysis reactions, increasing the FFA production.  相似文献   

2.
In an attempt to produce the polyunsaturated fatty acid (PUFA)enriched glycerides, commercially available Turkish anchovy oil (PUFA content of 27%), was hydrolyzed with 1,3-specificRhizomucor miehei lipase. After the hydrolysis, the triglyceride (TG), diglyceride (DG), monoglyceride (MG), and free fatty acid (FFA) composition of the reaction mixture was determined, and fatty acid components of these fractions were analyzed.R. miehei lipase released PUFA extremely slowly, resulting in their accumulation in the TG and DG fractions, especially in TG. The PUFA content in the glyceride mixture (including TG, DG, and MG) increased as hydrolysis progressed. The effects of operational parameters (pH, temperature, time, and enzyme concentration) on the extent of hydrolysis were investigated. Based on these results, optimal reaction conditions were established. At optimal conditions (pH 4.0, 35°C, 3 h, and enzyme concentration of 500 U/g oil), the level of PUFA in the glyceride mixture was raised to 40%. The individual TG and DG fractions contained 45 and 30% PUFA, respectively. Less than 2% of the total PUFA was lost in the FFA fraction.  相似文献   

3.
The ability of immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) to catalyze the reaction of high-acid rice bran oil (RBO) and monoglyceride (MG) for diacylglycerol-enriched rice bran oil (RBO-DG) preparation was investigated. The effects of substrate ratio, reaction temperature, time, and enzyme load on the respective content of free fatty acid (FFA) and DG in the final RBO-DG products was investigated. Enzyme screening on the reaction was also investigated. Response surface methodology (RSM) was used to optimize the effects of the reaction temperature (50?C70?°C), the enzyme load (2?C6?%; relative to the weight of total substrates), and the reaction time (4?C8?h) on the respective content of FFA and DG. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values. The optimum preparation conditions were as follows: MG/RBO, 0.25; temperature, 56?°C; enzyme load, 4.77?%; and reaction time, 5.75?h. Under the suggested conditions, the respective content of FFA and DG was 0.28 and 27.98?%, respectively. Repeated reaction tests indicated that Lipozyme RM IM could be used nine times under the optimum conditions with 90?% of its original catalytic activity still retained.  相似文献   

4.
Abstract

Methodologies for the separation of various lipid classes including free fatty acids (FA) and fatty acid ethyl esters (FAEE), monoglycerides (MG), diglycerides (DG), triglycerides (TG), phosphoglycerides (PG), and glycosphingolipids (GSL) by Centrifugal Partition Chromatography are presented. The fatty acid ethyl esters, Hexadecanoate, Octadecanoate, cis-9-Octadecenoate; and cis,cis-9,12-Octadecadienoate, and all-cis-9,12,15-Octadecatrienoate, were separated at 800 rpm; flow rate of 2.0 ml/min; using n-hexane/acetonitrile (1:1, v/v) as the solvent system and normal ascending and reversed descending elution modes respectively. The fatty acid ethyl esters, all-cis-5,8,11,14,17-Icosapentaenoate and all-cis-4,7,10,13,16,19-Docosahexaenoate, were separated at 600 rpm; flow rate of 3.3 ml/min; using n-hexane/methanol/water (1/0.9/0.1, v/v/v) as the solvent system and normal ascending mode. FA and MG; and DG and TG were separated at 600 rpm; 10  相似文献   

5.
Though it is standard practice to test the stability of analytes in the matrix for routine bioanalytical method, stability evaluation is always impractical and skipped in untargeted lipidomic and metabolomic analysis because analytes in these studies are enormous, diverse and sometimes unknown. Lipidome represents a major class of plasma metabolome and shows great potential to be diagnostic and prognostic biomarkers. However, lipidome also faces stability problems because plasma contains kinds of lipid degradation enzyme. Here, using liquid chromatography time of flight mass spectrometry based lipidomic methodology, plasma levels of various lipids including triglyceride (TG), diglyceride (DG), free fatty acid (FFA), phosphatidylethanolamine (PE) phosphatidylcholine (PC), lyso-phosphatidylcholine (LPC), lyso-phosphatidylethanolamine (LPE), and sphingomyelin (SM) were dynamically determined within 4 h at ambient temperature. In mouse and rat plasma, the levels of most TG, DG, PC and PE species significantly decreased with respect to time, whereas those of LPC, LPE and FFA significantly increased with respect to time. However, such changes did not occur in human plasma, thus indicating hepatic lipase and esterase might involve in the species-specified degradation of lipid classes in plasma. Phenylmethanesulfonyl fluoride (PMSF) pretreatment prevented such lipidome instability in mouse plasma. The results suggested the instability of plasma lipidome should be highly concerned, and the enhancement of ex vivo stability of plasma lipidome could enable more reliable clinical translation of lipidomic data for biomarker discovery.  相似文献   

6.
A firefly luciferase (LUC)‐based bioluminescent assay for total free fatty acids (FFA) is presented. It is based on LUC's capability of converting FFA into fatty acyl‐adenylates with consumption of adenosine 5′‐triphosphate (ATP). Since ATP is a cosubstrate in LUC's bioluminescent reaction, together with firefly d ‐luciferin (d ‐LH2) and atmospheric oxygen (O2), any reduction in the assay's ATP content will lead to a decrease in the bioluminescent signal, which is proportional to the amount of FFA. Using FFA mixtures containing myristic (14:0), palmitic (16:0), stearic (18:0), oleic (18:1) and arachidonic acid (20:4) in ethanol, the assay was optimized through statistical experimental design methodology, namely fractional factorial (screening) and central composite (optimization) designs. The optimized method requires 2 μL of sample per tube in a final reaction volume of 50 μL. It is linear in the concentration range from 1 to 20 μm , with limits of detection (LOD) and quantitation (LOQ) of 1.3 and 4.5 μm , respectively. The method proved to be simple to perform, demands low reagent volumes, it is sensitive and robust and may be adapted to high‐throughput screening.  相似文献   

7.
Flavonoids are bioactive food compounds with potential lipid-lowering effects. Commercially available enzymatic assays are widely used to determine free fatty acid (FFA) and triglyceride (TG) levels both in vivo in plasma or serum and in vitro in cell culture medium or cell lysate. However, we have observed that various flavonoids interfere with peroxidases used in these enzymatic assays, resulting in incorrect lower FFA and TG levels than actually present. Furthermore, addition of isorhamnetin or the major metabolite of the flavonoid quercetin in human and rat plasma, quercetin-3-O-glucuronide, to murine serum also resulted in a significant reduction of the detected TG levels, while a trend was seen for FFA levels. It is concluded that when applying these assays, vigilance is needed and alternative analytical methods, directly assessing FFA or TG levels, should be used for studying the biological effects of flavonoids on FFA and TG levels.  相似文献   

8.
A rapid method for the simultaneous determination of free glycerol (FG) and total glycerol (TG) in biodiesel by CE using a short‐end multiple injection (SE/MI) configuration system is described. The sample preparation for FG involves the extraction of glycerol with water and for TG a saponification reaction is carried out followed by extraction as in the case of FG. The glycerol extracted in both cases is submitted to periodate oxidation and the iodate ions formed are measured on a CE‐SE/MI system. The relevance of this study lies in the fact that no analytical procedure has been previously reported for the determination of TG (or of FG and TG simultaneously) by CE. The optimum conditions for the saponification/extraction process were 1.25% KOH and 25°C, with a time of only 5 min, and biodiesel mass in the range of 50.0–200.0 mg can be used. Multiple injections were performed hydrodynamically with negative pressure as follows: 50 mbar/3s (FG sample); 50 mbar/6s (electrolyte spacer); 50 mbar/3s (TG sample). The linear range obtained was 1.55–46.5 mg/L with R2> 0.99. The LOD and LOQ were 0.16 mg/L and 0.47 mg/L, respectively for TG. The method provides acceptable throughput for application in quality control and monitoring biodiesel synthesis process. In addition, it offers simple sample preparation (saponification process), it can be applied to a variety biodiesel samples (soybean, castor, and waste cooking oils) and it can be used for the determination of two key parameters related to the biodiesel quality with a fast separation (less than 30 s) using an optimized CE‐SE/MI system.  相似文献   

9.
Conversion of high free fatty acids (FFA) containing acid oil (AO) to fatty acid methyl esters (FAME) using silica sulfuric acid (SSA) as a solid acid catalyst was investigated. Process parameters such as reaction temperature, reaction time, catalyst loading, and methanol to oil molar ratio were optimized using the Taguchi orthogonal array method. Maximum FFA conversion (97.16 %) was achieved under the optimal set of parameter values viz. 70°C, 4 mass % catalyst loading, and 1: 15 oil to methanol molar ratio after 90 min. SSA was reused three times successfully without a significant loss in activity. Biodiesel produced from AO met the international biodiesel standards. Determination of kinetic parameters proved that the experimental results fit the pseudo first order kinetic law.  相似文献   

10.
An integrated biodiesel process that combines enzymatic esterification and alkaline transesterification is suggested. With focus on the enzymatic step, the paper provides proof of concept and suggestions for further process development. Hence, palm fatty acid distillate (PFAD) has been enzymatically converted to fatty acid methyl esters in a two-step process using the immobilized lipase Novozym 435 in packed-bed columns. With only a small excess of methanol, the first reaction stage could reduce the free fatty acid (FFA) content from 85% to 5%. After removal of water by simple phase separation, it was possible to lower the FFA content to 2.5% in a second reaction stage. Both reaction stages are relatively fast with suggested reaction times of 15 min in column 1 (productivity 10 kg/kg/h) and 30 min in column 2 (productivity 5 kg/kg/h), resulting in 15% FFA after column 1 and 5% FFA after column 2. A lifetime study indicated that approximately 3,500 kg PFAD/kg Novozym 435 can be treated in the first reaction stage before the enzyme has become fully inactivated. With further optimization, the enzymatic process could be a real alternative to today’s sulfuric acid catalyzed process.  相似文献   

11.
The lipid fraction of Opuntia ficus indica seeds was extracted and analyzed for its chemical and physical properties such as acid value, free fatty acid percentage (% FFA), iodine index, peroxide value, and saponification value as well as refractive index and density. The yield of seed oil was calculated as 11.75%. The acid and free fatty acid values indicated that the oil has a fairly low acidity. The triacylglycerols, fatty acids, sterols, and tocopherols were identified and their concentrations determined. The main TAGs were LLL (25.60%), OLL (21.53%), PLL (15.53%), and POL + SLL (12.73%). Linoleic acid (60.69%) was the dominant fatty acid, followed by oleic (21.42%) and palmitic (12.76%) acids, respectively. A high level of sterols making up 16.06 g/kg seed oil was present. The sterol marker, β-sitosterol, accounted for 71.60% of the total sterol content in the seed oil. Among the tocopherols present in the oil, γ-tocopherol (421.08 mg/kg) was the main constituent.  相似文献   

12.
The possible application of native lipase ofNigella sativa seed in the esterification of fatty acids to glycerol was investigated, and the effect of process parameters and the enzyme selectivity on the reaction were determined. For this aim, the esterification of oleic acid, sunflower oil fatty acids, and coco oil fatty acids with glycerol were studied.  相似文献   

13.
Natural products have been receiving the spotlight from the people of developing and developed countries in recent years due to rising health care expenses and global financial crises. These natural products are the resources for bioactive compounds used in the drug development process. Tamanu seed oil is used for traditional remedies and cosmetic ingredients. The dried seed produces an oil with a yield of 50–75 %. Previous works reported that the seed oil comprised coumarins, one of the eminent groups of phenolics. Coumarins have anticancer, antimicrobial, anti-inflammatory, anticoagulant, antiviral, wound healing properties, and anti-HIV effects. Extraction is often referred to as the sample preparation method as its essential to purify bioactive compounds. In this work, coumarin mixture from tamanu oil was extracted by batchwise multi stages extraction. The effects of solvent used (methanol and ethanol), solvent–water concentration, and the number of stages were studied. The optimal conditions for the extraction of the coumarin mixture were 90 % ethanol and eight stages of extraction, which contributed to 50.73 ± 0.16 % of purity and 92.95 ± 3.76 % of recovery. Also, these conditions removed up to 66 % free fatty acids (FFA) and 100 % triglycerides (TG). It was found that the DPPH inhibition at 400 ppm shows that 90 % ethanol has the highest inhibition (57.72 ± 2.70 %) with an IC50 value of 305 ppm. Moreover, various compounds like pyrrole-2 carboxylate, epicrinamidine, cholestane, and hydroxysclerodin trimethyl ether were also detected in the polar fraction of tamanu oil.  相似文献   

14.
This work investigated a simple triglycerides (TGs) detection method combining an enzymatic reaction, using only lipase, and the electrocatalytic oxidation of glycerol with nortropine‐N‐oxyl (NNO). Tributyrin was employed as a model TG. In this method, TGs are degraded by lipase to glycerol and fatty acids, after which the glycerol reacts with NNO. Preliminary cyclic voltammetry trials demonstrated that the anodic peak current increased along with the glycerol concentration, giving currents of 53.2 and 97.3 μA (at +0.6 V vs. Ag/AgCl) in response to 10 and 100 mM glycerol, respectively. Amperometry confirmed the same response during constant potential electrolysis at+0.6 V vs. Ag/AgCl. This behavior was also observed in a system incorporating tributyrin and lipase, with increases in current proportional to the tributyrin concentration over the range of 0.1 to 10 mM.  相似文献   

15.
Cross-linking of enzyme aggregates from recombinant Geotrichum sp. lipase based on polyethylenimine (PEI) was applied to hydrolyze fish oil for enrichment of polyunsaturated fatty acids successfully. Through acetone precipitation and cross-linking of physical aggregates using glutaraldehyde in the presence of PEI, firmly cross-linked enzyme aggregates (PEI-CLEAs) were prepared. They could maintain more than 65% of relative hydrolysis degree after incubation in the range of 50–55 °C for 4 h and maintain more than 85% of relative hydrolysis degree after being treated by acetone, tert-butyl alcohol and octane for 4 h. PEI-CLEAs increased hydrolysis degree to 42% from 12% by free lipase. After five batch reactions, PEI-CLEAs still maintained 72% of relative hydrolysis degree. Hydrolysis of fish oil by PEI-CLEAs produced glycerides containing concentrated EPA and DHA in good yield. PEI-CLEAs had advantages over general CLEAs and free lipase in initial reaction rate, hydrolysis degree, thermostability, organic solvent tolerance and reusability.  相似文献   

16.
Monoglycerides (MG) are emulsifiers widely used in food and pharmaceutical industries. Current industrial processes for MG production consist of the interesterification of triglycerides with glycerol (GL), in the presence of inorganic catalysts at high temperatures (>200°C). This reaction is known as glycerolysis and produces a mixture of approx 50% of MG. This level of concentration is suitable for many applications, although, for some specific uses like margarine, shortening, icing, and cream filling, require distilled MGs, which are purified MG (min. 90%) obtained by the molecular distillation process. Therefore, in this work, a 23 factorial design was employed to evaluate the effects of reaction parameters in the MG content after the interesterification reaction of refined soybean oil with GL in the presence of sodium hydroxide as catalyst. After that, the MG content in the reaction product was enhanced through the molecular distillation process in order to obtain distilled MG.  相似文献   

17.
Commercial wheat gluten (WG) films, hard wheat gluten films and soft wheat gluten films, plasticized with glycerol have been cast from water–ethanol solutions. The effect of aging on various film properties has been investigated. The films were aged for about 6 months at 50% relative humidity and ~25 °C, and the mechanical (tensile strength and the percentage of elongation at break (E b)), thermal (TG and DSC) and Attenuated Total Reflectance (ATR)-FTIR spectral properties have been studied. Changes in the protein structure were determined by ATR-FTIR spectroscopy. Films from soft WG exhibited the highest E b (508%) and the highest TS (6.33 MPa). The TG analysis results show that the moisture content in all three kinds of WG protein films is about 5%. The absence of the glycerol phase transition in DSC curves implies that there is no separate phase containing glycerol in the WG protein-glycerol films with 40% glycerol.  相似文献   

18.
A new transmission-based Fourier transform infrared (FTIR) spectroscopic method for the direct determination of free fatty acids (FFA) in edible oils has been developed using the developed spectral reconstitution (SR) technique. Conventional neat-oil and SR calibrations were devised by spiking hexanoic acid into FFA-free canola oil and measuring the response to added FFA at 1,712 cm−1 referenced to a baseline at 1,600 cm−1(1,712 cm−1/1,600 cm−1). To compensate for the known oil dependency of such calibration equations resulting from variation of the triacylglycerol ester (C═O) absorption with differences in oil saponification number (SN), a correction equation was devised by recording the spectra of blends of two FFA-free oils (canola and coconut) differing substantially in SN and correlating the intensity of the ester (C═O) absorption at the FFA measurement location with the intensity of the first overtone of this vibration, measured at 3,471 cm−1/3,427 cm−1. Further examination of the spectra of the oil blends by generalized 2D correlation spectroscopy revealed an additional strong correlation with an absorption in the near-infrared (NIR) combination band region, which led to the development of a second correction equation based on the absorbance at 4,258 cm−1/4,235 cm−1. The NIR-based correction equation yielded superior results and was shown to completely eliminate biases due to variations in oil SN, thereby making a single FFA calibration generally applicable to oils, regardless of SN. FTIR methodology incorporating this correction equation and employing the SR technique has been automated.  相似文献   

19.
A new procedure for spectrofluorimetric determination of free and total glycerol in biodiesel samples is presented. It is based on the oxidation of glycerol by periodate, forming formaldehyde, which reacts with acetylacetone, producing the luminescent 3,5-diacetyl-1,4-dihydrolutidine. A flow system with solenoid micro-pumps is proposed for solution handling. Free glycerol was extracted off-line from biodiesel samples with water, and total glycerol was converted to free glycerol by saponification with sodium ethylate under sonication. For free glycerol, a linear response was observed from 5 to 70 mg L−1 with a detection limit of 0.5 mg L−1, which corresponds to 2 mg kg−1 in biodiesel. The coefficient of variation was 0.9% (20 mg L−1, n = 10). For total glycerol, samples were diluted on-line, and the linear response range was 25 to 300 mg L−1. The detection limit was 1.4 mg L−1 (2.8 mg kg−1 in biodiesel) with a coefficient of variation of 1.4% (200 mg L−1, n = 10). The sampling rate was ca. 35 samples h−1 and the procedure was applied to determination of free and total glycerol in biodiesel samples from soybean, cottonseed, and castor beans.  相似文献   

20.
Conventional plastics has a large impact in increasing the environment’s pollution. That’s why the interest has turned towards novel partially and completely biodegradable polymers. In this work, blends of polystyrene and thermoplastic starch with glycerol and Buriti (Mauritia flexuosa L.) oil as plasticizers were prepared. Samples were analyzed using TG/DTG and DSC techniques. The TG results indicated that the blends with Buriti oil are thermally more stable than those with glycerol. The DSC analysis that Buriti oil provides a higher degree of plasticization of PS, compared to the blends plasticized using glycerol under the studied conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号