首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the keratolytic drug salicylic acid (SA) on the thermotropic properties and fluidity of the mixed lipid membrane dipalmitoyl phosphatidylcholine (DPPC)-dipalmitoyl phosphatidylethanolamine (DPPE) had been studied using DSC, (1H and 31P) NMR, SAXS, and dynamic light scattering. The membrane was in multilamellar vesicular (MLV) and unilamellar vesicular (ULV) form with SA/(DPPC+DPPE) molar ratios, R(m), in the range from 0 to 0.5. It was found that the mechanism of interaction of SA with the lipid mixture exhibited similar patterns in both ULV and MLV. Both the NMR and DSC studies indicated that the drug molecules were probably localized in the lipid-water interfacial region neighboring the lipid headgroups or the glycerol moiety. The presence of the drug increased the fluidity of the membrane and the acyl chain order. However, studies on MLV showed that the presence of the drug in high concentration (R(m)0.2), caused destabilization of the DPPC-DPPE mixture, as indicated by the appearance of two endothermic transitions. DSC studies indicated that prolonged equilibration of the membrane led to reduced interaction between the lipid headgroups and the SA molecules. This reduced interaction could be due to the sequestering of the drug molecules into the lipid-water interfacial region, out of proximity to the polar headgroup or glycerol moiety. Effect of inclusion of cholesterol in the membrane systems was also studied.  相似文献   

2.
The influence of the sulfone drug, diamino diphenyl sulfone (DDS or dapsone) on the phase transitions and dynamics of the model membrane, dipalmitoyl phosphatidylethanolamine (DPPE)-water/buffer has been studied using DSC and (1H and 31P) NMR. These investigations were carried out with DPPE dispersion in both multilamellar vesicular (MLV) and unilamellar vesicular (ULV) forms for DDS/DPPE molar ratio, R, in the range 0-0.5. DSC results indicate that the mechanism by which DDS interacted with the DPPE membrane is independent of the morphological organization of the lipid bilayer and the solvent (water or buffer) used to form the dispersion. DDS affected both the thermotropic phase transitions and the molecular mobility of the DPPE membrane. Addition of increasing amounts of DDS to the DPPE dispersion, resulted in the lowering of the gel to liquid-crystalline phase transition temperature (Tm) hence increased membrane fluidity. At all concentrations, the DDS is located close to the interfacial region of the DPPE bilayer but not in the acyl chain region. The interesting finding with MLV is that the gel phase of DPPE-water/buffer both in presence and absence of DDS, on prolonged equilibration at 25 °C, transforms to a stable crystalline subgel phase(s). The DPPE-water system forms both crystalline subgel LLC (with transition temperature TLC < Tm) and LHC (with transition temperature THC ≥ Tm) phases, while the DPPE-buffer system forms only subgel LLC phase. The presence of the drug seems to (i) increase the strength of the subgel LLC phase and (ii) decrease the strength of subgel LHC (for R < 0.5) phase. However, the value of the transition temperatures TLC and THC does not change significantly with increasing drug concentration.  相似文献   

3.
The effect of the preservative propyl paraben (PPB) on the phase transition and dynamics of dipalmitoyl phosphatidic acid (DPPA)-buffer (pH 7.4/9.3) vesicles has been studied using DSC and ((1)H and (31)P) NMR. These investigations were carried out with DPPA dispersion in both multilamellar vesicular (MLV) and unilamellar vesicular (ULV) forms. DSC results indicate that the mechanism by which PPB interact with the DPPA vesicles is similar in MLV and ULV and is independent of pH of the buffer used to form the dispersion. However, for a given concentration of PPB, the perturbation in DPPA bilayer is more when the dispersion is prepared in buffer pH 7.4. PPB affected both the thermotropic phase transition and the molecular mobility of the DPPA membrane. In the presence of PPB, the gel to liquid crystalline phase transition temperature (T(m)) of the DPPA vesicles decreases hence increases membrane fluidity due to reduced headgroup-headgroup interaction. For all concentrations, the PPB molecules seem to get intercalated between the polar groups of the phospholipids with its alkyl chain penetrating into the co-operative region. At high PPB concentration, additional transitions are observed whose intensity increases with increasing PPB concentration. The large enthalpy values obtained at high PPB concentration suggest that presence of PPB makes the DPPA bilayer more ordered (rigid). The interesting finding obtained with MLV is that the stable gel phase of DPPA-buffer (pH 9.3/7.4) system in the presence of high PPB concentration becomes a metastable gel phase, this metastable gel phase on equilibration at 25 degrees C or when cooled to -20 degrees C transforms to a stable crystalline phase(s). The intensity of this new phase(s) increases with increasing PPB concentration. However, the transition temperatures of these new phases are not significantly changed with increasing PPB concentration. The effect of inclusion of cholesterol in the PPB-free and PPB-doped DPPA dispersion was also studied.  相似文献   

4.
Vesicles composed of a phosphatidylethanolamine derivative with a cyclopropyl-containing interfacial region are twenty-seven times less permeable than vesicles composed of a closely related analogue.  相似文献   

5.
Dipalmitoyl phosphatidyl glycerol (DPPG) as Langmuir monolayers at the air/water interface was investigated by means of surface pressure measurements in addition to Brewster angle microscopy (BAM) during film compression/expansion. A characteristic phase transition region appeared in the course of surface pressure-area (pi-A) isotherms for monolayers spread on alkaline water or buffer subphase, while on neutral or acidic water the plateau region was absent. This phase transition region was attributed to the ionization of DPPG monolayer. It has been postulated that the ionization of the phosphatidyl glycerol group leads to its increased solvation, which probably provokes both a change in the orientation of the polar group and its deeper penetration into bulk phase. Film compression along the transition region provokes the dehydration of polar groups and subsequent change of their conformation, thus causing the DPPG molecules to emerge up to the interface. Quantitative Brewster angle microscopy (BAM) measurements revealed that along the liquid-expanded to liquid-condensed phase transition the thickness of the ionized DPPG monolayer increases by 4.2 A as a result of the conformational changes of the ionized polar groups, which tend to emerge from the bulk subphase up to the surface.  相似文献   

6.
The surface activities of lysozyme and dipalmitoyl phosphatidylcholine (DPPC) vesicles at aqueous/compressed fluid interfaces are examined via high-pressure interfacial tension measurements using the pendant drop technique. The density and interfacial tension in compressible fluid systems vary significantly with pressure, providing a versatile medium for elucidating interactions between biomolecules and fluid interfaces and a method to elicit pressure-dependent interfacial morphological responses. The effects of lysozyme concentration (0.0008, 0.01, and 1 mg/mL) and pressure (> or = 7 MPa) on the dynamic surface response in the presence of ethane, propane, N2, and CO2 at 298 K were examined. Interfacial lysozyme adsorption reduced the induction phase and quickly led to interfacial tensions consistent with protein conformational changes and monolayer saturation at the compressed fluid interfaces. Protein adsorption, as indicated by surface pressure, correlated with calculated Hamaker constants for the compressed gases, denoting the importance of dispersion interactions. For DPPC at aqueous/compressed or aqueous/supercritical CO2 interfaces (1.8-20.7 MPa, 308 K), 2-3-fold reductions in interfacial tension were observed relative to the pure binary fluid system. The resulting surface pressures infer pressure-dependent morphological changes within the DPPC monolayer.  相似文献   

7.
The antioxidant reactivity of the lipophilic derivative of vitamin C, i.e., ascorbyl-6-palmitate (VC-16) was remarkably enhanced in dipalmitoyl phosphatidylcholine (DPPC) vesicles. The rate enhancement is tentatively explained by a vesicle fusion mechanism and subsequent lateral diffusion of reactants within the vesicle. The reduction of nitroxides incorporated into the vesicle by VCs was employed to examine the distribution of the nitroxide inside and outside the vesicle as well as the dynamic behaviour of the inside-outside transition (flip-flop).  相似文献   

8.
The effect of three-dimensional confinement on the size and morphology of a vesicular surfactant mesophase obtained by mixing micellar solutions of cetyltrimethylammonium bromide and dodecylbenzenesulfonic acid has been studied using small-angle neutron scattering (SANS). The confined spaces were generated by the random close packing of polystyrene beads of radius Rb=1.5, 0.25, and 0.1 microm, creating voids of characteristic dimensions R approximately 0.22 Rb=3300, 550, and 220 A, respectively. These void length scales were comparable to or less than the radii of vesicles formed in the system under conditions of no confinement. Vesicles, made by mixing 0.8 wt % micellar solutions of surfactant in a water/D2O mixture that is contrast-matched with the polystyrene beads, were added in a SANS scattering cell without beads, as well as three cells with the different sized beads. The SANS data from the sample without confinement was best fitted by a core-shell model and not by spheres or disks, confirming the presence of vesicles. The data from samples in the confined domains also showed vesicles as the dominant structure. The most important result is that the mean size of these vesicles decreases as the confinement length scale is reduced. A simple thermodynamic model accounting for the balance between increased enthalpy when vesicles with curvature higher than the preferred one are formed, and increased free volume entropy for smaller vesicles supports the experimental data. While these results are focused on a specific vesicle system, the broad principles behind changes in microstructure produced by confinement are applicable to other surfactant aggregates. The results of this study are potentially important for understanding the flow of drug delivery vehicles through microcapillaries, in the recovery of oil from fine pores in rocks using surfactant containing fluids, micellar enhanced ultrafiltration, or in other situations where the size of surfactant aggregate structures approach the length scales between confining walls.  相似文献   

9.
Aqueous concentrated lecithin mixtures (asolectin from soybean) show typical lamellar liquid crystalline behavior and the individual lamellae tend to form spherical supramolecular structures, i.e., multilamellar vesicles. When part of the lecithin is replaced by the anionic surfactant sodium dodecyl sulfate (SDS), the compact multilamellar vesicles disappear and the viscosity decreases. By adding poly(diallyldimethylammonium chloride) (PDADMAC) to the lecithin/SDS system, the formation of multilamellar vesicles can be induced again and the viscosity increases. However, one characteristic feature of these polymer-modified systems is a temperature-dependent phase transition from a compact multilamellar vesicle phase to a more swollen liquid crystalline phase. The polymer-modified multilamellar compact vesicles are of interest for utilization as new thermosensitive drug delivery systems.  相似文献   

10.
To assess the affinity of psychotropic phenothiazine drugs, triflupromazine (TFZ) and chlorpromazine (CPZ), for the membranes of central nervous system and the other organs in the body, the partition coefficients (Kps) of these drugs to phosphatidylcholine (PC)-phosphatidylserine (PS) and PC-phosphatidylethanolamine (PE) small and large unilamellar vesicles (SUV, LUV) were examined by a second-derivative spectrophotometric method, since PS is abundantly contained in the membranes of the central nervous system and PE is distributed widely in the membranes of the organs in the body. Size and preparation methods of the vesicles did not affect the Kp values at each aminophospholipid content suggesting that the partition of the phenothiazine drugs was not affected by the structural differences in the vesicles such as their curvature or asymmetric distribution of the phospholipids between the outer and inner layers of the bilayer membranes. However, the Kp values of both drugs increased remarkably according to the PS content in the bilayer membranes, i.e., the Kp values for the vesicles of 30 mol% PS content were about 3 times of that for the vesicles of PC alone, while both Kp values slightly reduced with the increase in the content of PE in the bilayer membranes of PC-PE vesicles. The results indicate that both drugs have higher affinity for the PC-PS bilayer membranes than for the PC and PC-PE membranes, which can offer an evidence for the fact that TFZ and CPZ are predominantly distributed and accumulated in the brain and nerve cell membranes that contain PS abundantly.  相似文献   

11.
12.
Dipalmitoyl phosphatidic acid (DPPA) monolayers at the air-water interface were studied from surface pressure (Pi)-area (A) isotherms and at the microscopic level with Brewster angle microscopy (BAM) under different conditions of temperature, pH, and ionic strength. BAM images were recorded simultaneously with Pi-A isotherms during the monolayer compression-expansion cycles. DPPA monolayers show a structural polymorphism from the liquid-expanded (LE)-liquid-condensed (LC) transition region at lower surface pressures toward liquid-condensed and solid (S) structures at higher surface pressures. An increase in temperature, pH, or ionic strength provokes an expansion in the monolayer structure. The results obtained from the Pi-A measurements are confirmed by the monolayer topography and relative reflectivity. The measurements of relative reflectivity upon monolayer compression showed an increase in relative monolayer thickness of 1.25 and 3.3 times throughout the full monolayer compression from the liquid-expanded to the liquid-condensed and solid states, respectively.  相似文献   

13.
Vrhovec S  Mally M  Kavčič B  Derganc J 《Lab on a chip》2011,11(24):4200-4206
The reversible environmental changes around flaccid lipid vesicles represent a considerable experimental challenge, particularly because of remarkable softness of flaccid membranes, which can warp irreversibly under the slightest hydrodynamic flow. As a result, we have developed a microfluidic device for the controlled analysis of individual flaccid, giant lipid vesicles in a changing chemical environment. The setup combines the advantages of a flow-free microfluidic diffusion chamber and optical tweezers, which are used to load the sample vesicles into the chamber. After a vesicle is loaded into the diffusion chamber, its chemical environment is controllably and reversibly changed solely by means of diffusion. The chamber is designed as a 250 micrometres-long and 100 micrometres-wide dead-end microchannel, which extends from a T-junction of the main microchannels. Measurements of the flow-velocity profile in the chamber show that the flow rate decreases exponentially and scales linearly with the flow rate in the main channel. The characteristic length of the exponential decrease is 15 (1 ± 0.13) micrometres, meaning that a large part of the diffusion chamber is effectively flow-free. The diffusion properties are assessed by monitoring the diffusion of a dye into the chamber. It was found that a simple 1D diffusion model fits well to the experimental data. The time needed for the exchange of solutes in the chamber is of the order of minutes, depending on the solute's molecular weight. Here, we demonstrate how the diffusion chamber can be used for reversible environmental changes around flaccid, giant lipid vesicles and membrane tethers (nanotubes).  相似文献   

14.
Low-substituted chitosan was synthesized from shrimp chitin. The effect of the ionic strength on the dynamics of acetic acid solutions of propyl chitosan in longitudinal and shear modes was studied. The dynamic characteristics of these solutions under the action of hydrodynamic fields were estimated.  相似文献   

15.
The UV/Vis absorption band maximum lambdamax of trans-4,4'-nitrophenylaminoazobenzene, the thermal isomerization rate constant kiso of its cis-isomer, the fluorescence intensity ratio of monomer and excimer, and the fluorescence lifetime of the excimer, respectively, of 1,3-di(1-pyrenyl)propane were determined as probes for polarity, water content, and viscosity, respectively, in unilamellar vesicles of di-n-alkyl-dimethylammonium bromides and 1,2-acyl-sn-glycero-3-phosphocholines. The dependence on vesicle size, the solvent (water or HEPES buffer/NaCl solution, each with H2O or D2O), and the temperature (20-60 degrees C) was studied. Apparent Arrhenius activation energies and kinetic solvent isotope effects (KSIE = kiso,H2O/kiso, D2O) were derived. Size and stability of the vesicles prepared by extrusion were controlled by dynamic light scattering. The probe properties clearly indicate the reversibly decreasing size of didodecyldimethylammonium bromide vesicles with increasing temperature but are insensitive against vesicles size variation in most other cases. In the temperature range of the main phase transition of the bilayers, changes of the microenvironment of the probes, and their changing position in the bilayer, respectively, are reflected by characteristic changes of their properties. Buffer/NaCl solution causes vanishing influence of the lipid chain but remaining difference between cationic and zwitterionic headgroups probed by means of kiso.  相似文献   

16.
The pH and temperature responsive properties of poly(butadiene)107-poly(L-lysine)27 (PB107-P(Lys)27) block copolymer vesicles in aqueous solution were studied using dynamic and static light scattering, circular dichroism spectroscopy and transmission electron microscopy. In this material, the responsiveness comes partially from secondary structure changes within the polypeptide chain. These studies seek to elucidate the effect of these different polypeptide secondary structure changes on the morphology of self-assembled vesicles. It was found that as pH decreases, protonation of P(Lys) side-chain amine groups causes swelling in the vesicles due to the helix-coil transition and associated charge-charge interactions within the corona chains. At high pH and high temperature, P(Lys) corona chains undergo a secondary structure change from alpha-helix to beta-sheet which causes an increase in vesicle size due to the relief of interfacial curvature. This study represents one of the first instances whereby different secondary structure transitions within the same polypeptide have been incorporated into a block copolymer assembly that can be used to produce dual-responsive materials.  相似文献   

17.
Admittance measurements at zero applied direct voltage are reported for solutions containing 10?4 to 10?7M dipicrylamine, in contact with a black phosphatidylethanolamine membrane. The experimental data can be interpreted quantitatively in terms of a model involving slow phase transfer and fast desorption—adsorption kinetics. The adsorption of dipicrylamine makes it possible to distinguish experimentally between ion transport across the membrane itself and that across the water/membrane interfaces.  相似文献   

18.
以3-(甲基丙烯酸酰氧)丙基三甲氧基硅烷修饰的Fe3O4为载体,没食子酸丙酯为模板分子,采用表面印迹技术制备了核壳结构的磁性没食子酸丙酯分子印迹聚合物(Fe3O4@SiO2-MIPS),并将该磁性分子印迹聚合物作为吸附剂引入到微流控芯片中,与HPLC联用,实现对痕量酚类抗氧化剂的分离富集.采用扫描电镜、磁滞回线、热重分析、红外光谱及X射线衍射对该磁性分子印迹聚合物表征.在最佳萃取条件下(样品体积3 mL,样品溶液pH=5.0,样品流速为0.5 mL./min,洗脱液流速为0.3 mL/min),该聚合物对酚类抗氧化剂具有较强的富集作用.3种酚类抗氧化剂在10~5000 ng/mL范围内呈现良好的线性关系,线性相关系数均大于0.9901,日内和日间相对标准偏差(n=5)分别低于2.8%和3.5%.将本方法用于化妆水中酚类抗氧化剂的分析检测,加标回收率在87.9% ~ 104.0%之间,相对标准偏差(n=3)小于3.7%.  相似文献   

19.
Adding an artificial bolaamphiphile to a dispersion of giant multilamellar vesicles (GMVs) made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) induced a cup-shaped deformation in GMVs accompanied by partial extrusion of the inner vesicle; thereafter, the deformed vesicles returned to their original shape. On the other hand, when the artificial bolaamphiphile together with a surfactant was added to the vesicular dispersion, these deformation and reformation dynamics were transmitted from the outer membranes in GMVs to the inner membranes until an intact inner vesicle was extruded out of the outer membrane. The microscopic aspects of these processes were investigated using amphiphiles tagged with individual fluorophores.  相似文献   

20.
pH-sensitive liposomes composed of phosphatidylethanolamine and fatty acid   总被引:1,自引:0,他引:1  
pH-induced destabilization, aggregation and fusion of liposomes composed of phosphatidylethanolamine (PE) and various fatty acid were studied. Destabilization was examined as a fluorescent change caused by leakage of coencapsulated aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and N,N-p-xylylenebispyridinium bromide (DPX). Fusion was monitored by two different methods, that is, intermixing assay of internal aqueous contents of liposomes, and lipid dilution assay of liposomes labeled with fluorescent phospholipids. Contents leakage from liposomes was observed by lowering the pH, and pH where the leakage began depended on fatty acid used. Fifty percent leakage of contents from PE liposomes containing alpha-hydroxypalmitic acid or alpha-hydroxy-stearic acid was observed at pH 5.5, that from liposomes containing stearic acid or palmitic acid was observed at pH 6.5-6.7, and that from ricinoleic acid at pH 7.2. Aggregation and fusion of the respective liposomes also occurred at a similar pH region. These results were interpreted by the notion that the protonation of the fatty acid triggers a series of pH-sensitive events. The liposomes developed in this study may be useful as a drug carrier which could release the contents in response to pH changes in their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号