首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Extensive spectroscopic investigations have been carried out by recording the Fourier transform infrared (FTIR) and FT-Raman spectra and carrying out the theoretical quantum chemical studies on 4-morpholinecarboxaldehyde (4MC). From the ab initio and DFT analysis using HF, B3LYP and B3PW91 methods with 6-31G(d,p) and 6-311G++(d,p) basis sets the energies, structural, thermodynamical and vibrational characteristics of the compound were determined. The energy difference between the chair equatorial and chair axial conformers of 4MC have been calculated by density functional theory (DFT) method. The optimised geometrical parameters, theoretical wavenumbers and thermodynamic properties of the molecule were compared with the experimental values. The effect of carbonyl group on the characteristic frequencies of the morpholine ring has been analysed. The mixing of the fundamental modes with the help of potential energy distribution (PED) through normal co-ordinate analysis has been discussed.  相似文献   

2.
Ab initio molecular orbital theory with the 6-31G(d), 6-31G(d,p), 6-31+G(d), 6-31+G(d,p), 6-31+G(2d,p), 6-311G(d), 6-311G(d,p), and 6-311+G(2d,p) basis sets and density functional theory (BLYP, B3LYP, B3P86, B3PW91) have been used to locate transition states involved in the conformational interconversions of 1,4-dithiacyclohexane (1,4-dithiane) and to calculate the geometry optimized structures, relative energies, enthalpies, entropies, and free energies of the chair and twist conformers. In the chair and 1,4-twist conformers the C-Hax and C-Heq bond lengths are equal at each carbon, which suggest an absence of stereoelectronic hyperconjugative interactions involving carbon-hydrogen bonds. The 1,4-boat transition state structure was 9.53 to 10.5 kcal/mol higher in energy than the chair conformer and 4.75 to 5.82 kcal/mol higher in energy than the 1,4-twist conformer. Intrinsic reaction coordinate (IRC) calculations showed that the 1,4-boat transition state structure was the energy maximum in the interconversion of the enantiomers of the 1,4-twist conformer. The energy difference between the chair conformer and the 1,4-twist conformer was 4.85 kcal/mol and the chair-1,4-twist free energy difference (deltaG degrees (c-t)) was 4.93 kcal/mol at 298.15 K. Intrinsic reaction coordinate (IRC) calculations connected the transition state between the chair conformer and the 1,4-twist conformer. This transition state is 11.7 kcal/mol higher in energy than the chair conformer. The effects of basis sets on the 1,4-dithiane calculations and the relative energies of saturated and unsaturated six-membered dithianes and dioxanes are also discussed.  相似文献   

3.
用密度函数理论B3LYP方法和6-31G(d,p),6-311G(d,p)及6-311+G(d,p)基组,分别对1-C4H^+~8,2-C4H^+~8和C4H^+~10进行了构型优化和频率分析计算,预言1-C4H^+~8具有非平面构型,与以往报道的从头算和密度函数理论计算结果不同。在各自由基阳离子的B3LYP构型上,进行了B3LYP、MP2及MRSDCI方法的超精细偶合常数计算,得到了比以往更好的结果,特别是MP2/B3LYP计算值是至今与实验值符合得最好的理论计算结果。  相似文献   

4.
Density functional theory (DFT) calculations were carried out on some cyclohexane derivatives to investigate the deviation atoms on the 1- and 4-positions of chair plane. The deviations of chair plane of two position in the cyclohexane derivatives were calculated at the B3LYP/6-31 ++ G(d,p) level. Furthermore, we investigated the correlation between deviations of two positions from chair plane on the chemical shift hydrogen atoms on the 4-position.  相似文献   

5.
In this study density functional theory (DFT) calculations at B3LYP/6-31G(d), B3LYP/6-31+G(d) and B3LYP/6-311+G(2df,2p) levels for geometry optimization and total energy calculation were applied for investigation of the important energy-minimum conformations and transition-state of 1,2-, 1,3-, and 1,4-dithiepanes. Moreover, ab initio calculations at HF/6-31G(d) level of theory for geometry optimization and MP2/6-311G(d)//HF/ 6-31G(d) level for a single-point total energy calculation were reported for different conformers. The obtained results reveal that, the twist-chair conformer is a global minimum for all of these compounds. Also, two local minimum were found in each case, which are twisted-chair and twisted-boat conformers. The boat and chair geometries are transition states. The minimum energy conformation of 1,2-dithiepane is more stable than the lowest energy forms of 1,3-dithiepane and 1,4-dithiepane. Furthermore, the anomeric effect was investigated for 1,3-dithiepane by the natural bond orbital method. The computational results of this study shows that all conformers of 1,3-dithiepane have a hypercojugation system. Finally, the 13C NMR chemical shifts for the conformers of 1,4-dithiepane were calculated, which have good correlation with their experimental values.  相似文献   

6.
Ab initio molecular orbital theory with the LANL2DZ, 3-21G, 6-31G(d), 6-31+G(d), 6-31+G(d,p), 6-311+G(d,p),6-31G(2d), 6-31G(3d), and 6-311G(d,p) basis sets and density functional theory (B3P86, B3LYP, B3PW91) have been used to calculate the structures, relative energies, enthalpies, entropies, and free energies of the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran (tetrahydrothiopyran, thiacyclohexane, thiane, pentamethylene sulfide). All levels of theory calculated similar energy values and the effect of basis sets on the calculated energies was small. The chair conformer of tetrahydro-2H-thiopyran was 5.27 kcal/mol more stable than the 1,4-twist conformer, which was slightly more stable (0.81 kcal/mol) than the 2,5-twist conformer. The chair–1,4-twist and chair–2,5-twist free energy differences ( G°c – t) were 5.44 and 5.71 kcal/mol, respectively. Intrinsic reaction coordinate [IRC, minimum-energy path (MEP)] calculations connected the transition state between the chair and the 2,5-twist conformers. This transition state is 9.73 kcal/mol higher in energy than the chair conformer and the energy differences between the chair and the 1,4-boat and 2,5-boat transition states were 8.07 and 6.38 kcal/mol, respectively. Stereoelectronic hyperconjugative interactions were observed in the chair, 1,4-twist, and 2,5-twist conformers of tetrahydro-2H-thiopyran. The stereoelectronic hyperconjugative effects in the chair conformer of tetrahydro-2H-thiopyran have been compared to those in the respective chair conformers of tetrahydro-2H-pyran, tetrahydro-2H-selenane, and tetrahydro-2H-tellurane.  相似文献   

7.
The FT-IR and FT-Raman spectra of 1-bromo-4-chlorobenzene (1-Br-4-CB) have been recorded using Bruker IFS 66V spectrometer in the region of 4000-100 cm(-1). Ab-initio-HF (HF/6-311+G (d, p)) and DFT (B3LYP/6-31++G (d, p)/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. Comparison of simulated spectra with the experimental spectra provides important information, the computational method have the ability to describe the vibrational methods. The frequency estimation analysis on HF and DFT is made. The impact of di-substituted halogens on the benzene molecule has also been discussed.  相似文献   

8.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

9.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

10.
1 INTRODUCTION Butene and its isomers are important petroleum raw materials. Isomerization reaction of butene plays a key role in the course of C4 alkylation and its reaction mechanism has captured the attention of chemists all along[1, 2]. As a green so…  相似文献   

11.
In accordance with the procedure described by E. Wiberg, Me(3)Al-NH(3) was heated as a bulk material in inert atmosphere to give a colorless liquid which slowly loses methane. Close to the end of this elimination reaction, the melt crystallized to give a microcrystalline powder of (Me(2)AlNH(2))(x)(). The structure of this intermediate has been solved by the method of high-resolution X-ray powder diffraction. The compound crystallizes in the monoclinic space group C2/c with the cell parameters of a = 15.0047(6) A, b = 8.7500(2) A, c = 24.4702(8) A, and beta = 107.290(2) degrees, with eight trimers (Me(2)AlNH(2))(3) per unit cell. These trimers crystallize in a boat conformation in contrast to the known trimers of the same composition where a twist-boat conformation had been found by single crystal determination. Different conformers of (Me(2)AlNH(2))(3) have been investigated by theoretical methods (HF/6-31G(d), B3LYP/6-31G(d), B3LYP/6-311G(d,p), MP2(fc)/6-31G(d), and MP2(fc)/6-311G(d,p)). The twist-boat and the chair conformer correspond to minima at the potential energy surface, whereas the boat conformer corresponds to a first-order transition state (relative energies of 0.45-2.56 kJ/mol (boat) and 6.66-11.91 kJ/mol (chair)). Relaxed scans of the potential energy surface at the HF/6-31G(d) and B3LYP/6-31G(d) levels have shown that the boat conformer (C(s)() symmetry) connects two enantiomers of the twist-boat form (C(2) symmetry).  相似文献   

12.
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments of methylphenidate in the ground state were performed by DFT/B3LYP level of theory using the 6-311++G(d, p) basis set. Harmonic vibrational frequencies were calculated. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The conformational stabilities and optimized geometrical parameters have been carried out with density functional theory with 6-311++G(d, p) basic set by the DFT/B3LYP method. The frequency calculations have been performed with DFT to study the vibrational properties and their dependence on the molecular conformation.  相似文献   

13.
The whole possible course of conformational isomerization of 4-methyl-1,3-dioxane has been established using empirical (MM+) and nonempirical [STO-3G, 3-21G, 6-31G(d) and 6-31G(d,p)] approximations within the limits of the Hartree-Fock method. It was shown that the potential energy surface of this compound contains a principal (equatorial chair conformer) and local minima corresponding to the axial chair conformer and series flexible forms.  相似文献   

14.
The high-resolution (1)H, (13)C, (1)H-(1)H COSY and (1)H-(13)C COSY NMR spectra have been recorded in CDCl(3) for arylacetonitriles 1-12 and analyzed. The arylacetonitriles 3-7 exist in two isomeric forms E (methyl group is anti to cyano group) and Z (the methyl group is syn to cyano group) in solution. Normal chair conformation with equatorial orientations of phenyl rings at C-2 and C-6 for monocyclic nitriles 1 and 2, epimeric chair structure EC (axial configuration of methyl group at C-3) for both the E and Z isomers of arylacetonitrile derivatives (3-7) and a distorted boat form, B(3), for the N-acylacetonitrile derivatives (8-10) have been proposed based on NMR data. The bicyclic nitriles 11 and 12 exist in twin chair conformations in solution. DFT calculations and chemical shifts also support these conformations. Geometry optimizations for 1-12 were carried out according to density functional theory using B3LYP/6-31G(d,p) basis set and for 1 and 8 the theoretical geometrical parameters have been compared with those of single crystal measurements.  相似文献   

15.
Density functional theory (DFT) investigation has been undertaken to explore alkaline hydrolysis mechanisms for nitrocellulose in the gas phase and in bulk water solution by considering the dimer and trimer forms of 2,3,6-trinitro-β-d-glucopyranose in the (4)C(1) chair conformation and by comparing the computed results with the monomer. Ground and transition state geometries were optimized using the B3LYP functional and the 6-311G(d,p) basis set both in the gas phase and in the bulk water solution. The nature of respective potential energy surfaces was ascertained through harmonic vibrational frequency analysis. Intrinsic reaction coordinate calculations were performed to ensure that computed transition state connects to the respective reactants and products. Single-point energy calculations were also performed using the recently developed M06-2X functional and the cc-pVTZ basis set using the B3LYP/6-311G(d,p) optimized geometries. Effect of the bulk water solution was modeled using the polarizable continuum model (PCM) approach. It has been suggested that the dimeric form of 2,3,6-trinitro-β-d-glucopyranose can be considered as the smallest model to study the nitrocellulose system regarding the alkaline hydrolysis reaction. It was predicted that the peeling-off reaction will start after the denitration of various sites, which will follow a C3 → C6 → C2 denitration route. Further, it was determined that the peeling-off reaction will be more preferred than the ring cleavage through the ring CO bond.  相似文献   

16.
The effect of the presence of an exo- and/or an endo double bond on the geometry of seven membered rings has been investigated by a conformational analysis of methylenecycloheptane, cycloheptamine, borepane, and 4-, 3- and 2-cyclohepten-1-one by the B3LYP/6-311+G(d,p) and CCSD(T)/6-311+G(d,p) levels of theory. The results indicate that both methylenecycloheptane and cycloheptamine have low energy barriers with respect to pseudorotation and a broad potential well centred on the most symmetrical twist-chair conformation. Borepane shows similar characteristics, but with drastically different relative energy values. The introduction of an extra endo double bond in the conformationally flexible cycloheptanone, fixes the family of chair conformations to a single rigid form, but lowers the relative energy of the boat conformations to compete in stability with the former.  相似文献   

17.
This work compares the performance of theoretical methods and basis sets on the molecular structure, atomisation and ionisation energies, electron affinity, and vibrational spectrum of silylene. Silylene, its cation and anion have been studied in 1 A 1, 2 A 1 and 2 B 1 states, respectively, in the gas phase and C2v symmetry. The methods considered are second-order Møller-Plesset perturbation theory (MP2), the density functional theory (DFT), Gaussian-2 (G2) and complete basis set methods (CBS-4M and CBS-Q). The basis sets used are 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) and 6-311++G(d,p). The functional used for the DFT method is B3LYP. Silylene and its cation and anion have been optimised using the MP2 and DFT methods and the named basis sets. Single-point energy calculations (G2, CBS-4M and CBS-Q) were performed using MP2/6-311++G(d,p) structures and these energies have been used to calculate atomisation energy, ionisation energy and adiabatic electron affinity. Frequency calculations were also done and the raw vibrational frequencies were assigned. It is interesting to note the close similarity between the predicted parameters and some of the available literature values. The results obtained are consistent and converge with different basis sets with improved size and quality. However, the parameters obtained are very much method dependent.  相似文献   

18.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

19.
The molecular geometry, vibrational frequencies and NBO analysis of phenylisothiocyanate (PITC) in the ground state have been calculated by using density functional theory calculation (B3LYP) with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with experimental values. Comparison of the observed fundamental vibrational frequencies of the PITC and calculated result by density functional theory (B3LYP) indicates B3LYP is superior for molecular vibrational problems. The entropy of the title compound was also performed at HF/B3LYP/6-311++G(d,p) levels of theory. Natural bond orbital (NBO) analysis of title molecule is also carried out. A detailed interpretation of the IR and Raman spectra of PITC is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrogram for IR spectrum of the title molecule has been constructed.  相似文献   

20.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号