首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The C(s) symmetry reaction of the H(2) molecule on a Pt(4) (111) clusters, has been studied using ab initio multiconfiguration self-consistent field plus extensive multireference configuration interaction variational and perturbative calculations. The H(2) interaction by the vertex and by the base of a tetrahedral Pt(4) cluster were studied in ground and excited triplet and singlet states (closed and open shells), where the reaction curves are obtained through many avoided crossings. The Pt(4) cluster captures and activates the hydrogen molecule; it shows a similar behavior compared with other Pt(n) (n=1,2,3) systems. The Pt(4) cluster in their lowest five open and closed shell electronic states: (3)B(2), (1)B(2), (1)A(1) (3)A(1), (1)A(1), respectively, may capture and dissociate the H(2) molecule without activation barriers for the hydrogen molecule vertex approach. For the threefolded site reaction, i.e., by the base, the situation is different, the hydrogen adsorption presents some barriers. The potential energy minima occur outside and inside the cluster, with strong activation of the H-H bond. In all cases studied, the Pt(4) cluster does not absorb the hydrogen molecule.  相似文献   

2.
The effect of particle size on combustion efficiency is an important factor in combustion research. Gas-phase aluminum clusters in oxidizing environment constitute a relatively simple and extensively studied system. In an attempt to underscore the correlation between electronic structure, finite size effect, and reactivity in small aluminum clusters, reactions between aluminum, [Al(13)](-) cluster, and Teflon decomposition fragments were studied using theoretical calculations at the density functional theoretical level. The unimolecular rate constants calculated using transition state and Rice-Ramsperger-Kassel-Marcus theory show that reactions with COF and CF(2) species with aluminum are faster than those involving CF(3) and COF(2). The results show that the kinetic barriers along different exothermic reaction channels correlate with the trends in HOMO(R)-HOMO(TS) (HOMO denotes highest occupied molecular orbital) energy gap and related shifts of the HOMO levels of reactants. Overall reactions involving carbonyl fluoride species (COF and COF(2)) lead to CO elimination and fluorination of the Al cluster. The CF(3)/CF(2) fragments lead to stable multicenter Al-C bond formation on the fluorinated Al cluster surface. Temperature-, energy-, and pressure-dependent rate constants are provided for extrapolating the expected reaction kinetics to conditions similar to known combustion reactions.  相似文献   

3.
Ab initio electronic structure theory calculations on cluster models support the characterization of the signature absorption spectrum of a solvated hydroxyl OH radical as a solvent-to-solute charge transfer state modulated by the hydrogen-bonding environment. Vertical excited states in OH(H2O)n clusters (n = 0-7, 16) calculated at the TDDFT level of theory (with companion calculations at the EOM-CCSD level of theory for n 相似文献   

4.
5.
Electronic properties of water clusters (H2O)(n), with n=2, 4, 8, 10, 15, 20, and 30 molecules were investigated by sequential Monte Carlo/density-functional theory (DFT) calculations. DFT calculations were carried out over uncorrelated configurations generated by Monte Carlo simulations of liquid water with a reparametrized exchange-correlation functional that reproduces the experimental information on the electronic properties (first ionization energy and highest occupied molecular orbital-lowest unoccupied molecular orbital gap) of the water dimer. The dependence of electronic properties on the cluster size (n) shows that the density of states (DOS) of small water clusters (n>10) exhibits the same basic features that are typical of larger aggregates, such as the mixing of the 3a1 and 1b1 valence bands. When long-ranged polarization effects are taken into account by the introduction of embedding charges, the DOS associated with 3a1 orbitals is significantly enhanced. In agreement with valence-band photoelectron spectra of liquid water, the 1b1, 3a1, and 1b2 electron binding energies in water aggregates are redshifted by approximately 1 eV relative to the isolated molecule. By extrapolating the results for larger clusters the threshold energy for photoelectron emission is 9.6+/-0.15 eV (free clusters) and 10.58+/-0.10 eV (embedded clusters). Our results for the electron affinity (V0=-0.17+/-0.05 eV) and adiabatic band gap (E(G,Ad)=6.83+/-0.05 eV) of liquid water are in excellent agreement with recent information from theoretical and experimental works.  相似文献   

6.
In order to understand the catalytic activity of small metal clusters as a function of their size, we have studied the interaction of CH4 with Al4 and Al5 neutral and charged clusters, as well as neutral thermally expanded clusters in the two lowest lying spin states, using density functional theory. These calculations, via extended search, are used to determine the stable positions of H and CH3 near the cluster, and the transition state to break the H─CH3 bond. In order to understand the factors underlying the reactivity of the clusters, we have analyzed the electronic structure at the transition state. By an analysis of the change of the electronic density of states close to the transition state, we identify the orbitals involved in the bond breaking process. In conjunction with our previous studies of Al2 and Al3 clusters, we find that the small Al clusters, except for Al5, lower the CH3─H dissociation barrier with respect to the gas-phase value, although Al lacks occupied d-orbitals. Still, Al5 does not catalyze methane bond breaking, which is attributed to the required interaction with low-lying Al sp-states. Furthermore, in all cases where stable methyl-aluminum-hydrides are possible, the recombinative desorption of methane is studied by vibrational analysis and application of transition state theory.  相似文献   

7.
用密度泛函理论结合全电子自旋极化方法构建并优化出了最稳定的(Al16Ti) (n=0-3)离子团簇, 研究了其几何结构、稳定性和电子结构. 同时研究了水分子在(Al16Ti) (n=0-3)离子团簇表面的吸附结构和吸附能. 研究结果与纯(Al17Ti) (n=0-3)离子团簇的电子结构及其与H2O分子的相互作用规律做了对比. 通过电子最高占据轨道和最低空轨道的空间分布, 发现大部分的活性电子占据在Ti 原子位置, 少量电子根据曲率从大到小的顺序依次占据. 通过分析最稳定的(Al16TiH2O) (n=0-3)吸附化合物的几何结构可以看出, 水分子都倾向于吸附在Ti原子上, 并且为亲氧吸附. 在所有的吸附化合物中, (Al16TiH2O)+具有最短的平均O―H键长, 比孤立H2O分子中的O―H键约长0.0003 nm, 然后随着电子数的增加或减少, O―H键都会进一步被拉长. 研究结果表明, Al 团簇离子中Ti 原子的掺杂可以有效提高H2O分子的解离效率. 另外, 在金属团簇的几何结构效应与杂质效应共同出现时, 杂质的影响占据了主导地位.  相似文献   

8.
The studies on the structure and electronic properties of hydrogenated metal embedded Al(12) cage clusters have been performed by density functional theory calculations. We have investigated aluminum cluster hydrides with 12 and 14 hydrogen atoms, respectively. Insertion of the Mg, Ca alkali metals remarkably enhances the stability of the aluminum clusters. The hydrogen atom prefers to occupy on-top sites along the surface of the clusters. Mulliken population analysis indicates that significant charge transfer occurs between the Mg and Ca atoms and the Al atoms. Our computations suggest that these clusters appear to be physically and chemically stable.  相似文献   

9.
The electronic structure and stability in binary and ternary aluminum‐bismuth‐nitrogen nanoclusters up to six atoms are studied using density functional theory (DFT). The lowest energy geometries were obtained by sampling the geometrical space with a Monte Carlo method and geometry optimizations, at DFT level, with M06L functional. The clusters stability is analyzed using formation and fragmentation energies. Our results show that a high concentration of nitrogen presents a tendency to form nitrogen clusters. highest occupied molecular orbital‐lowest unoccupied molecular orbital gaps show the well‐known oscillation as the number of atoms is increased. Bonding between Al, Bi, and N has mainly a π character. Bismuth and aluminum atoms tend to promote high multiplicity states in small clusters. These new binary and ternary materials provide a potential new field in optoelectronics and high energetic material compounds. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
采用基于密度泛函理论的第一性原理方法系统地研究了Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇的结构、稳定性和电子性质.对团簇的平均结合能、镶嵌能、垂直离化势、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)的能级差、电荷布居分析、自然键轨道(NBO)进行了计算和讨论.对于Au12M(M=Na,Mg,Al)团簇,它们形成了内含M原子的最稳定的笼状结构.然而对于Au12M(M=Si,P,S,Cl)团簇,它们却形成了以M元素为顶点的稳定锥形结构.在这些团簇中发现Au12S团簇相对是最稳定的,这是由于Au12S团簇形成了稳定的满壳层的电子结构.自然电荷布居分析表明:对于所有的Au12M(M=Na,Mg,Al,Si,P,S,Cl)团簇电荷总是从Au原子转向M原子.自然键轨道和HOMO分析表明Au12M团簇中发生了Au原子的s-d轨道和M原子的p轨道间的杂化现象.  相似文献   

11.
This is the first paper in a series of four dealing with the adsorption site, electronic structure, and chemistry of small Au clusters, Au(n) (n=1-7), supported on stoichiometric, partially reduced, or partially hydroxylated rutile TiO(2)(110) surfaces. Analysis of the electronic structure reveals that the main contribution to the binding energy is the overlap between the highest occupied molecular orbitals of Au clusters and the Kohn-Sham orbitals localized on the bridging and the in-plane oxygen of the rutile TiO(2)(110) surface. The structure of adsorbed Au(n) differs from that in the gas phase mostly because the cluster wants to maximize this orbital overlap and to increase the number of Au-O bonds. For example, the equilibrium structures of Au(5) and Au(7) are planar in the gas phase, while the adsorbed Au(5) has a distorted two-dimensional structure and the adsorbed Au(7) is three-dimensional. The dissociation of an adsorbed cluster into two adsorbed fragments is endothermic, for all clusters, by at least 0.8 eV. This does not mean that the gas-phase clusters hitting the surface with kinetic energy greater than 0.8 eV will fragment. To place enough energy in the reaction coordinate for fragmentation, the impact kinetic energy needs to be substantially higher than 0.8 eV. We have also calculated the interaction energy between all pairs of Au clusters. These interactions are small except when a Au monomer is coadsorbed with a Au(n) with odd n. In this case the interaction energy is of the order of 0.7 eV and the two clusters interact through the support even when they are fairly far apart. This happens because the adsorption of a Au(n) cluster places electrons in the states of the bottom of the conduction band and these electrons help the Au monomer to bind to the five-coordinated Ti atoms on the surface.  相似文献   

12.
Formation and properties of halogenated aluminum clusters   总被引:1,自引:0,他引:1  
The fast-flow tube reaction apparatus was employed to study the halogenation of aluminum clusters. For reactions with HX (X=Cl, Br, and I), acid-etching pathways are evident, and we present findings for several reactions, whereby Al(n)X(-) generation is energetically favorable. Tandem reaction experiments allowed us to establish that for Al(n)Cl(-), Al(n)I(-), and Al(n)I(2) (-), species with n=6, 7, and 15 are particularly resistant to attack by oxygen. Further, trends in reactivity suggest that, in general, iodine incorporation leaves the aluminum clusters' electronic properties largely unperturbed. Ab initio calculations were performed to better interpret reaction mechanisms and elucidate the characteristics of the products. Lowest energy structures for Al(13)X(-) were found to feature icosahedral Al(13) units with the halogen atom located at the on-top site. The charge density of the highest occupied molecular orbital in these clusters is heavily dependent on the identity of X. The dependence of reactivity on the clusters' charge state is also discussed. In addition, we address the enhanced stability of Al(13)I(-) and Al(13)I(2) (-), arguing that the superhalogen behavior of Al(13) in these clusters can provide unique opportunities for the synthesis of novel materials with saltlike structures.  相似文献   

13.
The electronic and geometrical structures of the lowest triplet states of (GaAs) n clusters ( n = 2-16) are studied using density functional theory with generalized gradient approximation (DFT-GGA). It is found that the triplet-state geometries are different from the corresponding singlet-state geometries; for n = 2-8, 10, and 11, the triplets and singlets have different topologies, while the (GaAs) 9, (GaAs) 12, (GaAs) 15, and (GaAs) 16 triplets possess a reduced symmetry, due to Jahn-Teller distortions. Except for GaAs, the singlet states are the ground states. Excitation energies and oscillator strengths are computed for excitations from the ground state to ten singlet states of all (GaAs) n clusters using time-dependent density functional theory. The adiabatic singlet-triplet gap is compared to the vertical gap, and the difference in the eigenvalues of the highest-occupied and lowest-unoccupied molecular orbitals (the HOMO-LUMO gap). While these three values show large oscillations for small n, they approach each other as the cluster size grows. Thus, the HOMO-LUMO gap computed using the DFT-GGA approach presents a rather reliable estimate of the adiabatic singlet-triplet gap.  相似文献   

14.
We found from DFT calculations that Ag-Ag orbital interactions as well as Ag-O electrostatic interactions determine the structures of three silver cations inside a nanometer-sized cavity of ZSM-5 (Ag(3)-ZSM-5) in lower and higher spin states. Both interactions strongly depend on the number of Al atoms substituted for Si atoms on the ZSM-5 framework (ZSM-5(Al(n))), where n ranges from 1 to 3. In smaller n, stronger Ag-Ag orbital interactions and weaker Ag-O electrostatic interactions operate. Accordingly, there are significant dependencies of the structures of three silver cations on the number of Al atoms. In lower spin states of Ag(3)-ZSM-5(Al(1)) and Ag(3)-ZSM-5(Al(2)), D(3h)-like triangle clusters are contained inside ZSM-5 whereas their higher spin states have triangle clusters distorted significantly from the D(3h) structure. In lower spin states, the totally symmetric orbital consisting of 5s(Ag) orbitals is responsible for cluster formation, whereas in higher spin states occupation of a 5s(Ag)-based orbital with one node results in significant distortion of the triangle clusters. The distortion can be partially understood by analogies to Jahn-Teller distortion of the bare D(3h) Ag(3)(+) cluster in the triplet spin state. When n is 3, we found that three silver cations are isolated in a lower spin state and that a linear cluster consisting of two silver cations is formed in a higher spin state. Thus, we demonstrate from DFT calculations that the number of Al atoms can control the properties of three silver cations inside a ZSM-5 cavity. Since the structural and electronic features of the enclosed silver clusters can link to their catalytic properties, the DFT findings can help us to understand the catalytic activity of Ag-ZSM-5.  相似文献   

15.
The electronic and geometrical structures of three nitrogen-doped aluminum clusters, Al(x)N(-) (x=3-5), are investigated using photoelectron spectroscopy and ab initio calculations. Well-resolved photoelectron spectra have been obtained for the nitrogen-doped aluminum clusters at four photon energies (532, 355, 266, and 193 nm). Global minimum structure searches for Al(x)N(-) (x=3-5) and their corresponding neutrals are performed using several theoretical methods. Vertical electron detachment energies are calculated using three different methods for the lowest energy structures and low-lying isomers are compared with the experimental observations. Planar structures have been established for all the three Al(x)N(-) (x=3-5) anions from the joint experimental and theoretical studies. For Al(5)N(-), a low-lying nonplanar isomer is also found to contribute to the experimental spectra, signifying the onset of two-dimensional to three-dimensional transition in nitrogen-doped aluminum clusters. The chemical bonding in all the planar clusters has been elucidated on the basis of molecular orbital and natural bond analyses.  相似文献   

16.
金钯二元小团簇的几何结构与电子性质   总被引:1,自引:0,他引:1  
在UBP86/LANL2DZ和UB3LYP/def2-TZVP水平下详细研究了AumPdn(m+n≤6)团簇的几何结构和电子性质.阐明了团簇的结构特征、平均结合能、垂直电离势、垂直电子亲和能、电荷转移以及成键特征.除单取代混合团簇(AunPd和AuPdn,n=5或6)外,五和六原子混合团簇中钯原子趋于聚集到一起形成Pdcore,金原子分布在Pdcore周围形成PdcoreAushell结构.含一个和两个钯原子团簇的电子性质与纯金团簇类似,呈现一定奇偶振荡.混合团簇的电子性质,如最高占据分子轨道(HOMO),最低未占据分子轨道(LUMO),垂直电离势,垂直电子亲和能,Fermi能级和化学硬度等均与团簇空间结构和金、钯原子数之比直接相关.混合团簇中存在钯原子到金原子间的电荷转移,表明团簇中存在明显金钯间成键作用.分析团簇的电荷分布、前线轨道和化学硬度表明,金钯混合团簇对小分子如O2、H2和CO等的反应活性要强于纯金团簇.  相似文献   

17.
The change in the electronic structure of Au(n)- clusters induced by the exchange of an Au atom by hydrogen is studied using photoelectron spectroscopy. Au anion clusters react with one hydrogen atom but not with molecular hydrogen. The spectra of Au(n)- and Au(n-1)H- clusters show almost identical features for n > 2 suggesting that hydrogen behaves as a protonated species by contributing one electron to the valence pool of the Au(n)- cluster. This behavior is in sharp contrast to that of the commonly understood electronic structure of hydrogen in metals; namely, it attracts an electron from the conduction band of the metal and remains in an "anionic" form or forms covalent bonding. We discuss the influence of the unique electronic structure of H on the unusual catalytic behavior of Au clusters.  相似文献   

18.
We investigate the relaxation of photoexcited Li(2)(+) chromophores solvated in Ne(n) clusters (n = 2-22) by means of molecular dynamics with surface hopping. The simplicity of the electronic structure of these ideal systems is exploited to design an accurate and computationally efficient model. These systems present two series of conical intersections between the states correlated with the Li+Li(2s) and Li+Li(2p) dissociation limits of the Li(2)(+) molecule. Frank-Condon transition from the ground state to one of the three lowest excited states, hereafter indexed by ascending energy from 1 to 3, quickly drives the system toward the first series of conical intersections, which have a tremendous influence on the issue of the dynamics. The states 1 and 2, which originate in the Frank-Condon area from the degenerated nondissociative 1(2)Π(u) states of the bare Li(2)(+) molecule, relax mainly to Li+Li(2s) with a complete atomization of the clusters in the whole range of size n investigated here. The third state, which originates in the Frank-Condon area from the dissociative 1(2)Σ(u)(+) state of the bare Li(2)(+) molecule, exhibits a richer relaxation dynamics. Contrary to intuition, excitation into state 3 leads to less molecular dissociation, though the amount of energy deposited in the cluster by the excitation process is larger than for excitation into state 1 and 2. This extra amount of energy allows the system to reach the second series of conical intersections so that approximately 20% of the clusters are stabilized in the 2(2)Σ(g)(+) state potential well for cluster sizes n larger than 6.  相似文献   

19.
We have shown that Aln clusters do not show any characteristics of a superatom in halogenated aluminum clusters. The enhanced stability of halogenated Al clusters can be explained by the magic nature of the clusters, not by superatom chemistry. The presence of even a few electronegative elements provides significant perturbation to the molecular orbitals of Al clusters and stabilizes the electropositive Al cluster cores, closely correlating with metal cluster-ligand chemistry. Our work provides significant chemical insights into the understanding of the structure and stability of halogenated aluminum clusters, and these new insights are applicable to other metal cluster-ligand systems.  相似文献   

20.
We present a computer program that is capable of fitting n-fold torsional barriers Vn (n = 2-6) and torsional constants F simultaneously to high- and low-resolution spectroscopic data of different isotopomeric internal rotors. The program has been utilized to fit independently barriers and torsional constants for both electronic states of several aromatic clusters. The constant F of the ammonia moiety in the phenol-ammonia cluster is shown to decrease upon electronic excitation, thus imaging the formation of a hydrogen-bonded complex between the phenoxy radical and the NH4 radical in the excited state. In contrast, for the naphthol-ammonia 1:1 clusters no change of F of ammonia could be found. For phenol-methanol cluster we found a decrease of F upon excitation which points to a stronger hydrogen bond between phenol and methanol in the excited state. A strong reduction of the torsional barrier upon excitation points to the formation of a methoxonium radical in a similar photoreaction as in phenol-ammonia cluster. For the phenol-water system we postulate the same mechanism, a photoreaction, which leads to a translocated hydrogen atom in the S1 state what can be deduced from the change of the torsional constant upon electronic excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号