首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between two spherical polymer brushes is studied by molecular dynamics simulation varying both the radius of the spherical particles and their distance, as well as the grafting density and the chain length of the end-grafted flexible polymer chains. A coarse-grained bead-spring model is used to describe the macromolecules, and purely repulsive monomer-monomer interactions are taken throughout, restricting the study to the good solvent limit. Both the potential of mean force between the particles as a function of their distance is computed, for various choices of the parameters mentioned above, and the structural characteristics are discussed (density profiles, average end-to-end distance of the grafted chains, etc.). When the nanoparticles approach very closely, some chains need to be squeezed out into the tangent plane in between the particles, causing a very steep rise of the repulsive interaction energy between the particles. We consider as a complementary method the density functional theory approach. We find that the quantitative accuracy of the density functional theory is limited to large nanoparticle separation and short chain length. A brief comparison to Flory theory and related work on other models also is presented.  相似文献   

2.
陈进 《高分子科学》2010,(3):311-322
<正>Three-dimensional Monte Carlo simulations of comb-like polymer chains with various backbone lengths N_b,arm lengths N_a and arm densities m are carried out to study the elastic behavior of comb-like polymer chains.The radius of gyration,the shape factors and bond length in different cases during elastic process are calculated,and it is found that the comb-like polymer molecules with longer backbone or shorter arm are more close to linear chains.But the arm density m affects the chain conformation non-monotonously.Some thermodynamic properties are also studied.Average Helmholtz free energy and elastic force f all increase with elongation ratioλfor all chains.  相似文献   

3.
The structure of polymers confined between surfaces is studied using computer simulation and a density functional approach. The simple model system considers the polymer molecule as a pearl necklace of freely jointed hard spheres, having attractions among the beads, confined between attractive surfaces. This approach uses the universality of the free-energy functional to obtain the self-consistent field required in the single chain simulation. The second-order direct correlation function for the uniform bulk fluid required as input has been calculated from the reference interaction site model integral equation theory using mean spherical approximation. The theoretical results are shown to compare well with the Monte Carlo simulation results for varying densities, chain lengths, and with different attractive interaction parameters. The simulation results on the conformational properties give important indications regarding the behavior of chains as they approach the surfaces.  相似文献   

4.
Monte Carlo simulations have been performed on a self-avoiding simple cubic lattice chain with the nearest-neighbor interactions for a range of chain lengths N from 40 to 1000 segments to investigate equilibrium properties of polymer chains from an athermal to a collapsed state. Both the fraction of segments in the clusters and the number of contacts exhibit the three stage process for the chain collapse, consistent with our previous molecular dynamics simulations of a fully atomistic chain. In the collapse region corresponding to the nearest-neighbor interaction parameter larger than 0.5 for a segment-solvent pair, polymer chains are quite spherical and both ends lie nearly randomized within the sphere. The peak height of the specific heat is proportional to N(In N)3/11, as predicted by the renormalization group theory.  相似文献   

5.
Following Di Benedetto it is proposed that noncrystalline polymer regions possess an approximate semicrystalline order with chain bundles that are locally parallel along distances of several nanometers. Packing with on-average four nearest neighbors is assumed. A spherical molecule may move through such a substrate in two distinct ways: (a) along the axis of a “tube” formed by locally parallel chains or (b) perpendicular to this axis by two polymer chains separating sufficiently to permit passage of the molecule. The first process is relatively fast, generally requires little activation energy, and determines the effective jump length in diffusion. The second is responsible for the activation energy of diffusion, which is taken as the minimum energy necessary to produce a symmetrical chain separation which allows transfer of a molecule. This is calculated as a function of the penetrant diameter d and parameters Γ and β which characterize the interchain cohesion and chain stiffness, respectively. Γ is estimated from the polymer density and cohesive energy density by suitably linearizing a relation given by Di Benedetto for the potential between two polymer chains approximated as infinite strings of Lennard-Jones force centers. β is shown to be approximately obtainable from the polymer chain backbone geometry and bond rotation potentials. An expression for the diffusion coefficient D is developed which contains only one disposable parameter, the effective jump length.  相似文献   

6.
We use the pruned-enriched Rosenbluth method to investigate systematically the segment density profiles of compact polymer chains confined between two parallel plane walls.The non-adsorption case of adsorption interaction energyε=0 and the weak adsorption case ofε=-1 are considered for the compact polymer chains with different chain lengths N and different separation distances between two walls D.Several special entropy effects on the confined compact polymer chains,such as a damped oscillation in the segment density profile for the large separation distance D,are observed and discussed for different separation distances D in the non-adsorption case.In the weak adsorption case,investigations on the segment density profiles indicate that the competition between the entropy and adsorption effects results in an obvious depletion layer.Moreover,the scaling laws of the damped oscillation period T_d and the depletion layer width L_d are obtained for the confined compact chains.Most of these results are obtained for the first time so far as we know,which are expected to understand the properties of the confined compact polymer chains more completely.  相似文献   

7.
A density functional theory is presented to study the effect of attractions on the structure of polymer solutions confined between surfaces. The polymer molecules have been modeled as a pearl necklace of freely jointed hard spheres and the solvent as hard spheres, both having Yukawa-type attractions and the mixture being confined between attractive Yukawa-type surfaces. The present theory treats the ideal gas free energy functional exactly and uses weighted density approximation for the hard chain and hard sphere contributions to the excess free energy functional. The attractive interactions are calculated using the direct correlation function obtained from the polymer reference interaction site model theory along with the mean spherical approximation closure. The theoretical predictions on the density profiles of the polymer and the solvent molecules are found to agree quite well with the Monte Carlo simulation results for varying densities, chain lengths, wall separations, and different sets of interaction potentials.  相似文献   

8.
The collapse behavior of a single comblike copolymer chain has been studied by Monte Carlo simulations. It has been supposed that the solvent is good for the side chains but the solvent quality for the backbone chain changes. It has been shown that depending on the structural parameters of the comb copolymer (the lengths of the backbone and side chains, grafting density of the side chains) various thermodynamically stable morphologies of the collapsed backbone chain can be realized. In addition to ordinary spherical globule we have observed elongated structures as well as necklace-like conformations. The proposed model can be used to describe conformational behavior of stoichiometric complexes between block copolymers with a polyelectrolyte short block and oppositely charged linear homopolymers.  相似文献   

9.
Monte Carlo computer simulations of single, flexible, self-avoiding chains on a cubic lattice have been performed upon conditions of increasing segment–segment cohesive energy (deteriorating solvent quality). The simulations spanned a wide range of chain lengths (20–10,000, i.e., up to molecular weights of a few millions) and cohesive energies (0.0–0.45kBT, i.e., from athermal to very poor solvents). The chain length dependence of the chain size in poor solvents was characterized by a wide plateau of almost null growth for intermediate chain lengths. This plateau was linked to the development of the incipient constant density core, while genuine power law dependence (1/3) was not reached even for the longest chains and poorest solvents simulated here. The mere appearance of a core required substantial chain lengths (higher than 1000; molecular weights of a few hundred thousands), while short chains underwent a gradual densification devoid of any qualitative changes in the density distribution. Sufficiently long chains became more but not quite spherical and underwent a reasonably sharp second order phase transition. The findings were generally in agreement with predictions of mean-field theory and with the use of the standard scaling variables, despite slight inconsistencies. Nevertheless, the results stress the fact that short chains never form a constant density core and that core-dominance on the globule's properties (“volume approximation”) is only valid for extraordinarily long chains [molecular weight of O(109)], an effect linked to the relatively diffuse nature of the surface layer and originating from chain connectivity in conjunction with spherical geometry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3651–3666, 2006  相似文献   

10.
It is now well established that controlling the grafted chain lengths and densities on nanoparticle surfaces determines the effective interactions between particles, and their assembly. Here, we present unusual kinetic results for achieving grafted chain lengths longer than the free chains using reversible addition‐fragmentation chain transfer (RAFT) polymerization and discuss the limitations to obtaining polymer grafting density higher than ~0.06 chains/nm2. We observe that surface initiated polymerization grows faster than the free chains in solution with high RAFT agent coverage (1.95 agents/nm2) on nanoparticles. The time‐dependence of graft density suggests that activation of the anchored chain transfer agent (CTA) is limited by the diffusion of macro‐radicals within growing grafts. Thus, radical transfer and exchange reactions become inefficient between grafts and free polymer, and convert the surface‐initiated RAFT mechanism to a free radical polymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1700–1705  相似文献   

11.
The line-dipole approximation for the evaluation of the exciton transfer integral J between conjugated polymer chains is rigorously justified. Using this approximation, as well as the plane-wave approximation for the exciton center-of-mass wave function, it is shown analytically that J approximately L when the chain lengths are smaller than the separation between them, or J approximately L-1 when the chain lengths are larger than their separation, where L is the chain length. Scaling relations are also obtained numerically for the more realistic standing wave approximation for the exciton center-of-mass wave function, where it is found that for chain lengths larger than their separation J approximately L-1.8 or J approximately L-2, for parallel or collinear chains, respectively. These results have important implications for the photophysics of conjugated polymers and self-assembled molecular systems, as the Davydov splitting in aggregates and the Forster transfer rate for exciton migration decrease with chain lengths larger than their separation. This latter result has obvious deleterious consequences for the performance of polymer photovoltaic devices.  相似文献   

12.
Linear chain surfactants in a densely packed arrangement (such as alkane chains in lipid monolayers in the “uniform tilt” structures) are described by a crude coarse-grained model where the endgroups grafted on the interface form a regular lattice and the chains are described by the bond fluctuation model with chains containing N = 4 effective monomers only. Square-well interactions between the monomers are studied for both the attractive and repulsive case for three choices of the interaction range. None of these models exhibits a structure with uniform tilt. For attractive interactions the last bond has a strong tendency to fold back thus leading to a very high density close to the interface. Only when an intrachain-potential favoring stiff chain configurations also is included one can obtain configurations with uniform tilt order. Although related models (with much longer chain lengths and lower grafting densities) are very useful for the study of polymer brushes, the present case of very short chains in a high-density state clearly is plagued by various lattice artefacts and it is concluded that for modelling linear chain surfactants one should use an off-lattice model even on a coarse-grained level.  相似文献   

13.
A system of compatible self‐avoiding polymer chains solubilized in spherical cores of block copolymer micelles was studied by lattice Monte Carlo simulations. The core is modeled as a spherical cavity on a simple cubic lattice, filled in partially by tethered (core‐forming) chains and partially by free (solubilized) chains. Molecular parameters (e.g., the ratio of the contour length of the model chains to the core radius) correspond to those in real micellar systems. The density (the fraction of lattice sites occupied) is 0.6 which corresponds to swollen micellar cores in real micellar systems. Simulations yield a constant segment density profile in the core. Both the tethered and solubilized chains acquire an ellipsoidal shape. The ellipsoids equivalent to both types of chains are more spherical than those in a melt and strongly oriented. The chains in the core show a Gaussian‐like behavior. Minor deviations from Gaussian behavior for tethered chains are due to surface effects.  相似文献   

14.
Adsorbed or grafted polymers are often used to provide steric stabilization of colloidal particles. When the particle size approaches the nanoscale, the curvature of the particles becomes relevant. To investigate this effect for the case of cylindrical symmetry, I use a classical fluids density functional theory applied to a coarse-grained model to study the polymer-mediated interactions between two nanorods. The rods are coated with end-adsorbing chains and immersed in a polymer melt of chemically identical, nonadsorbing chains. The force between the nanorods is found to be nonmonotonic, with an attractive well when the two brushes come into contact with each other, followed by a steep repulsion at shorter distances. The attraction is due to the entropic phenomenon of autophobic dewetting, in which there is a surface tension between the brush and the matrix chains. These results are similar to previous results for planar and spherical polymer brushes in melts of the same polymer. The depth of the attractive well increases with matrix chain molecular weight and with the surface coverage. The attraction is very weak when the matrix chain molecular weight is similar to or smaller than the brush molecular weight, but for longer matrix chains the magnitude of the attraction can become large enough to cause aggregation of the nanorods.  相似文献   

15.
Multivalent polymer chains exhibit excellent prospect in biomedical applications by serving as therapeutic agents. Using three-dimensional (3D) Langevin dynamics simulations, we investigate adsorption behaviors of multivalent polymer chains to a surface with receptors. Multivalent polymer chains display superselective adsorption. Furthermore, the range of density of surface receptors at which a multivalent polymer chain displays a superselective behavior, narrows down for chains with higher density of ligands. Meanwhile, the optimal density of surface receptors where the highest superselectivity is achieved, decreases with increasing the density of ligands. Then, the conformational properties of bound multivalent chains are studied systematically. Interestingly, we find that the equilibrium radius of gyration Rg and its horizontal component have a maximum as a function of the density of surface receptors. The scaling exponents of Rg with the length of chain suggest that with increasing the density of surface receptors., the conformations of a bound multivalent polymer chain first fall in between those of a two-dimensional (2D) and a 3D chain, while it is slightly collapsed subsequently.  相似文献   

16.
The wetting of PDMS-grafted silica spheres (PDMS- g-silica) is connected to their depletion restabilization in semidilute and concentrated PDMS/cyohexane polymer solutions. Specifically, we found that a wetting diagram of chemically identical graft and free homopolymers predicts stability of hard, semisoft, and soft spheres as a function of the bulk free polymer volume fraction, graft density, and the graft and free polymer chain lengths. The transition between stable and aggregated regions is determined optically and with dynamic light scattering. The point of demarcation between the regions occurs when the graft and free polymer chains are equal in length. When graft chains are longer than free chains, the particles are stable; in contrast, the particles are unstable when the opposite is true. The regions of particle stability and instability are corroborated with theoretical self-consistent mean-field calculations, which not only show that the grafted brush is responsible for particle dispersion in the complete wetting region but also aggregation in the incomplete wetting region. Ultimately, our results indicate that depletion restabilization depends on the interfacial properties of the nanoparticles in semidilute and concentrated polymer solutions.  相似文献   

17.
The authors present the results of molecular dynamics simulations of polymer films confined by smooth walls. Simulations were performed for a wide range of chain lengths covering both nonentangled and entangled regions, as well as film thicknesses ranging from the order of unperturbed chain size to the bulk state. The simulation results for the chain size dependence on the film thickness are compared with the prediction of the scaling model. By measuring the correlation function of the end-to-end vectors, we have determined the relaxation time of confined polymer chains in different entangled states. It is shown that there is a minimum in the relaxation time of long chains when decreasing the film thickness, which is partially due to the confinement-induced disentanglement effect.  相似文献   

18.
A coarse-grained model is used to study the conformational properties of semiflexible polymers with amphiphilic monomer units containing both hydrophilic and hydrophobic interaction sites. The hydrophobically driven conformational transitions are studied using molecular dynamics simulations for the chains of varying stiffness, as characterized by intrinsic Kuhn segment lengths that vary over a decade. It is shown that the energy of hydrophobic attraction required for the realization of the coil-to-globule transition increases with increasing chain stiffness. For rather stiff backbone, the coil-to-globule transition corresponds to a first order phase transition. We find that depending on the chain stiffness, a variety of thermodynamically stable anisometric chain morphologies are possible in a solvent selectively poor for hydrophobic sites of amphiphilic monomer units. For flexible chains, the amphiphilic polymer forms a cylindrical globule having blob structure with nearly spherical blobs. With increasing stiffness, the number of blobs composing the globule decreases and the shape of blobs transforms into elongated cylinder. Further increase in stiffness leads to compaction of macromolecules into a collagenlike structure when the chain folds itself several times and different strands wind round each other. In this state, the collagenlike structures coexist with toroidal globules, both conformations having approximately equal energies.  相似文献   

19.
This paper investigates the conformational and scaling properties of long linear polymer chains. These investigations are done with the aid of Monte Carlo (MC) and molecular dynamics (MD) simulations. Chain lengths that comprise several orders of magnitude to reduce errors of finite size scaling, including the effect of solvent quality, ranging from the athermal limit over the theta-transition to the collapsed state of chains are investigated. Also the effect of polydispersity on linear chains is included which is an important issue in the real fabrication of polymers. A detailed account of the hybrid MD and MC simulation model and the exploited numerical methods is given. Many results of chain properties in the extrapolated limit of infinite chain lengths are documented and universal properties of the chains within their universality class are given. An example of the difference between scaling exponents observed in actual solvents and those observed in the extremes of "good solvents" and "theta-solvents" in simulations is provided by comparing simulation results with experimental data on low density polyethylene. This paper is concluded with an outlook on the extension of this study to branched chain systems of many different branching types.  相似文献   

20.
采用退火 (Annealing)MonteCarlo方法 ,从高温到低温顺序模拟了简立方格点上考虑最近邻Ising相互作用的磁性高分子链在不同温度的磁性质和构象性质 .磁性高分子链在低温下存在自发磁矩 ,无限长链的临界温度Tc=1 77± 0 0 5J kB.在临界温度附近 ,高分子链经历了从伸展的无规线团到紧缩球体的塌缩相变 .对链的尺寸、形状、近邻数及能量的分析表明 ,高分子链的构象性质从温度Tc=1 77开始发生较明显的变化 ,这表明高分子Ising链的相变是Ising相互作用和链节运动协同作用的结果 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号