首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose acetate (CA) was modified with caprolactone (CL) under various reaction conditions in an internal mixer. The thermal behavior and relaxation transitions of the samples were determined by dynamic mechanical analysis and differential scanning calorimetry. Various relaxation transitions were detected in externally and internally modified cellulose acetate by DMTA. These were assigned to the glass transition of the main chain, to the movement of single glucose units and to hydroxymethyl groups. The β′ transition must belong to structural units larger than a single glucose ring and their formation must depend on sample preparation conditions. No transition could be assigned to grafted polycaprolactone (PCL) chains by DMTA. Contrary to other groups, we could not detect even the transitions of modified CA by DSC. Only the crystallization of oligomeric PCL homopolymer was observed mostly when it diffused to the surface of the sample.  相似文献   

2.
The use of natural materials has grown in the last years in the plastics industry. Natural lignocellulose fibers derived from agricultural waste present potential to be used as a replacement for glass fibers for polymer reinforcement, leading to lower CO2 footprint products. This work focuses on the modification of the cellulose fibers in order to improve the compatibility with poly(lactic acid) (PLA). The scoured wheat straw fibers were grafted with polycaprolactone (PCL) through ring opening polymerization. Thermal stability of the wheat straw fibers improved after chemical modifications enabling higher processing temperatures. Flexural and tensile moduli were improved by 23% and 15%, respectively, compared with neat PLA, using 20 wt% modified fibers. An improvement of 20% in the impact strength was obtained using PCL grafted fibers because of entanglements and molecular interactions between PCL grafted on the wheat straw fibers and PLA molecules. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In cellulose nanocomposites, the surface of the nanocellulosic phase is critical with respect to nanocellulose dispersion, network formation and nanocomposite properties. Microfibrillated cellulose (MFC) has been grafted with poly(ε-caprolactone) (PCL), via ring-opening polymerization (ROP). This changes the surface characteristics of MFC and makes it possible to obtain a stable dispersion of MFC in a nonpolar solvent; it also improves MFC’s compatibility with PCL. The thermal behavior of MFC grafted with different amount of PCL has been investigated using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). From TGA measurements, the fraction of PCL in MFC-PCL samples was estimated to 16%, 19%, and 21%. The crystallization and melting behavior of free PCL and MFC-PCL were studied with DSC, and a significant difference was observed regarding melting points, crystallization temperature, degree of crystallinity, as well as the time required for crystallization.  相似文献   

4.
N-Vinyl-2-pyrrolidone (NVP) and itaconic anhydride (IA) copolymers were synthesized via radical polymerization. The synthesized copolymers were grafted with MPEG chains of different average molecular weights (350, 550, 750 Da). The grafted copolymers were used as surfactants in the synthesis of poly(ε-caprolactone) (PCL) nanoparticles in water by solvent evaporation technique. In order to further test the synthesized surfactants, the miniemulsion polymerization of vinyl acetate was performed. Two methods of obtaining miniemulsion were implied: a sonicator and a static mixer. The synthesized surfactants performed well in both type of experiments while in the case of static mixer nanoparticles with a lower polydispersity were obtained. Droplets with a mean diameter of 160 nm were obtained when using the sonicator while in the case of static mixer the mean diameter was 280 nm.  相似文献   

5.
Amphiphilic diblock copolymer polycaprolactone‐block‐poly(glycidyl methacrylate) (PCL‐b‐PGMA) was synthesized via enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). Methanol first initiated eROP of ?‐caprolactone (?‐CL) in the presence of biocatalyst Novozyme‐435 under anhydrous conditions. The resulting monohydroxyl‐terminated polycaprolactone (PCL–OH) was subsequently converted to a bromine‐ended macroinitiator (PCL–Br) for ATRP by esterification with α‐bromopropionyl bromide. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate (GMA). A kinetic analysis of ATRP indicated a living/controlled radical process. The macromolecular structures were characterized for PCL–OH, PCL–Br, and the block copolymers by means of nuclear magnetic resonance, gel permeation chromatography, and infrared spectroscopy. Differential scanning calorimetry and wide‐angle X‐ray diffraction analyses indicated that the copolymer composition (?‐CL/GMA) had a great influence on the thermal properties. The well‐defined, amphiphilic diblock copolymer PCL‐b‐PGMA self‐assembled into nanoscale micelles in aqueous solutions, as investigated by dynamic light scattering and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5037–5049, 2007  相似文献   

6.
Cellulosic polysaccharides have increasingly been recognized as a viable substitute for the depleting petro-based feedstock due to numerous modification options for obtaining a plethora of bio-based materials. In this study, cellulose triacetate was synthesized from pure cellulose obtained from the waste lignocellulosic part of date palm (Phoenix dactylifera L.). To achieve a degree of substitution (DS) of the hydroxyl group of 2.9, a heterogeneous acetylation reaction was carried out with acetic anhydride as an acetyl donor. The obtained cellulose ester was compared with a commercially available derivative and characterized using various analytical methods. This cellulose triacetate contains approximately 43.9% acetyl and has a molecular weight of 205,102 g·mol1. The maximum thermal decomposition temperature of acetate was found to be 380 °C, similar to that of a reference sample. Thus, the synthesized ester derivate can be suitable for fabricating biodegradable and “all cellulose” biocomposite systems.  相似文献   

7.
Cellulose was first grafted with glycidyl methacrylate (GMA) in an ionic liquid via atom transfer radical polymerization (ATRP) and then the introduced epoxy groups were reacted with ethanediamine (EDA) to obtain an amino adsorbent. The grafting copolymer and the obtained adsorbent were characterized by FTIR, aH NMR, TEM and SEM. The results showed that the grafted copolymers had grafted polymer chains with well-controlled molecu- lar weight and polydispersity, the polymerization was a controlled system. The cellulose adsorbent had numerous micropores on the surface and showed high performance for Cr(VI) adsorption. The adsorption behavior was pH dependent and the sorption equilibrium was achieved within 2 h on the adsorbent.  相似文献   

8.
We studied the dissolution of microcrystalline cellulose (MCC) in binary mixtures of dimethyl sulfoxide (DMSO) and the ionic liquids: allylbenzyldimethylammonium acetate; 1-(2-methoxyethyl)-3-methylimidazolium acetate; 1,8-diazabicyclo [5.4.0]undec-7-ene-8-ium acetate; tetramethylguanidinium acetate. Using chemometrics, we determined the dependence of the mass fraction (in %) of dissolved cellulose (MCC-m%) on the temperature, T = 40, 60, and 80 °C, and the mole fraction of DMSO, χDMSO = 0.4, 0.6, and 0.8. We derived equations that quantified the dependence of MCC-m% on T and χDMSO. Cellulose dissolution increased as a function of increasing both variables; the contribution of χDMSO was larger than that of T in some cases. Solvent empirical polarity was qualitatively employed to rationalize the cellulose dissolution efficiency of the solvent. Using the solvatochromic probe 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (WB), we calculated the empirical polarity ET(WB) of cellobiose (a model for MCC) in ionic liquid (IL)–DMSO mixtures. The ET(WB) correlated perfectly with T (fixed χDMSO) and with χDMSO (fixed T). These results show that there is ground for using medium empirical polarity to assess cellulose dissolution efficiency. We calculated values of MCC-m% under conditions other than those employed to generate the statistical model and determined the corresponding MCC-m% experimentally. The excellent agreement between both values shows the robustness of the statistical model and the usefulness of our approach to predict cellulose dissolution, thus saving time, labor, and material.  相似文献   

9.
Boronic acid end‐functionalized polycaprolactone (PCL) polymers were synthesized by ring‐opening polymerization using a pinacol boronate ester‐containing (Bpin) initiator. The polymerization provides access to boron‐terminated polymers (i.e. Bpin‐PCL‐OH) with narrow molecular weight distributions (PDI = 1.09). Postsynthetic manipulation of the polymer's terminal hydroxyl group by copper‐catalyzed azide‐alkyne cycloaddition chemistry provides a series of bis end‐functionalized polymers with significant structural diversity at the termini. Deprotection of the boronate ester end group was accomplished with an acidic solid phase DOWEX resin. The boronate ester deprotection methodology does not result in hydrolysis of the polymeric backbone. The boronic acid‐tipped polymers were converted into star polymer assemblies using thermal dehydration and ligand‐facilitated trimerization. Thermal dehydration of (HO)2B‐PCL‐OAc to the corresponding boroxine‐based star polymer assembly was inefficient and lead to degradation products. Ligand‐facilitated trimerization using either pyridine or 7‐azaindole as the Lewis base was efficient and mild. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Cellulose acetate is a very good film-forming polymer with major applications in cigarette filters, photographic films, cosmetics and pharmaceutics formulations and membrane separation processes. Nevertheless, its rigidity and relative hydrophobic character can be limiting drawbacks for some applications. In this work, new cellulose acetate materials with highly flexible and hydrophilic grafts were obtained with different hydrophilic/hydrophobic balances. Cellulose acetate was grafted with methyl diethylene glycol methacrylate (MDEGMA) from brominated macroinitiators by atom transfer radical polymerization (ATRP) in two steps. The first step consisted of introducing ATRP initiator groups on cellulose acetate by reacting hydroxyl side groups with 2-bromoisobutyryl bromide. A preliminary study was then carried out to determine the experimental conditions for the controlled ATRP of MDEGMA homopolymerization in a solvent (cyclopentanone) compatible with cellulose acetate grafting. In these conditions, the MDEGMA homopolymerization followed Hanns Fischer’s kinetics model accounting for the radical persistent effect. The ATRP grafting was then investigated for two cellulose acetate macroinitiators differing in the number of their ATRP initiator groups. Two families of graft copolymers with nano-structured architectures were obtained. The first family corresponded to copolymers with a high number of short grafts. The copolymers of the second family had almost the same graft weight fractions but a small number of long grafts. The morphology of the graft copolymers was then investigated by synchrotron X-ray scattering. The most informative results showed that the phase segregation depended upon the number and length of the poly(MDEGMA) grafts. The copolymer with 44 wt.% of long grafts showed a segregated morphology of nano-domains with sharp interfaces and a radius of gyration of 11.5 nm (from Guinier’s law). These cellulose acetate copolymers eventually led to strong films with potential applications in membrane separations.  相似文献   

11.
Ring-opening (ROP) and enzymatic copolymerization (ECP) are among the most widely used approaches for synthesizing copolymers of polycaprolactone (PCL). It involves multiple-step reactions and the utilization of enzymes that make the process a lot more complicated, time consuming, and expensive. Atom transfer radical polymerization (ATRP) has been adopted to synthesize a novel amphiphilic copolymer in our study. The study presents a method to eliminate the ROP/ECP multiple steps in monomer polymerization thus making the process simpler and smoother. The synthesis of cationic polymer micelles copolymer of PCL-PGMA (polycaprolactone grafted poly glycidyl methacrylate) was carried out using direct functionalization of hydroxy group in crude PCL to achieve a higher degree of functionalization, i.e., 12.8% for macroinitiator. FTIR and 1H-NMR confirmed the successful synthesis of the copolymer with better control over the molecular weight with a PDI (1.84). DSC and XRD results showed the reduction of crystallinity by 86.81%, making copolymer more compatible for drug delivery application. The synthesized copolymer was further converted to nano-micelles drug carrier having an average size of 96.08 ± 21.22 nm. The drug encapsulation efficiency achieved was 60.0 ± 1.7%, and nano-micelles rendered a slow and controlled release of naproxen with long-term storage stability.  相似文献   

12.
淀粉乙酸酯的阴离子接枝己内酯聚合研究   总被引:5,自引:0,他引:5  
将淀粉在二甲基甲酰胺、吡啶存在下 ,以乙酸酐进行部分乙酰化 ,制备取代度为 0 7~ 1 9的淀粉乙酸酯 (St Ac) .以萘钠与淀粉乙酸酯中残余的羟基反应 ,将羟基转化为醇盐 (ONa) ,引发己内酯进行阴离子开环接枝聚合 ,合成了淀粉 聚己内酯接枝共聚物 (St g PCL) .采用凝胶渗透色谱法 (GPC)研究了接枝前后聚合物分子量的变化情况 ,并以接枝率、单体转化率对接枝反应进行了表征 .研究了接枝条件如温度、溶剂、引发剂和单体的用量对接枝率及单体转化率的影响 .研究发现随着反应温度升高 ,接枝率、单体转化率呈S曲线变化 ,单体浓度、引发剂浓度的增大有利于接枝反应的进行 .  相似文献   

13.
Hyperbranched poly(3-methyl-3-oxetanemethanol) (HBPO) was directly grafted from the surface of cellulose fibers (CF) through a surface hydroxyl group-initiated ring-opening polymerization of 3-methyl-3-oxetanemethanol (MOM). TOF–SIMS, XPS, AFM, ATR-FTIR, and TGA were utilized for characterizing the resultant HBPO-grafted cellulose fibers. The content of grafted HBPO is easily adjustable by controlling feeding dosage of the MOM. To verify the reactivity of hydroxyl groups in the grafted HBPO, poly(ε-caprolactone) (PCL) was further grafted from the HBPO-grafted cellulose surface.  相似文献   

14.
Antibacterial-modified cellulose fiber was prepared by covalently bonding β-cyclodextrin (β-CD) with cellulose fiber via citric acid (CA) as crosslinking agent, followed by the inclusion of ciprofloxacin hydrochloride (CipHCl) as antibiotic. Effects of reaction time, temperature, concentration of β-cyclodextrin citrate (CA-β-CD) and pH on the grafting reaction were investigated, and the grafting ratio of β-CD onto cellulose fibers was 9.7 % at optimal conditions; the loading and releasing behaviors of CipHCl into/from β-CD grafted cellulose fibers were also revealed, the load amount of CipHCl into grafted cellulose fibers increased remarkably, and the release of CipHCl from the grafted cellulose fibers was prolonged. The microstructure, phase and thermal stability of modified cellulose fibers were characterized by FT-IR, 13C CPMAS NMR, X-ray diffraction and TGA. Considerably longer bacterial activity against E. coli and S. aureus was observed for grafted fibers loading CipHCl compared to virgin ones. Optical and mechanical properties of the paper sheets decreased generally with more antibacterial-modified fibers added.  相似文献   

15.
The synthesis of cellulose graft copolymers using condensation reactions to graft onto the cellulose backbone is described. Cellulose acetate (D.S. 2.27) was grafted with MDI and TDI. The cellulose acetate-MDI copolymer was further reacted with hydroxy-terminated poly(butadiene-styrene) copolymer and polyethylene glycol. Grafting was confirmed by Pmr and IR spectroscopy. The copolymers were easily deacetylated with NaOMe. The deacetylated products were readily degraded by cellulysin, faster than cellulose itself.  相似文献   

16.
Polycaprolactone (PCL) has been widely adopted as a scaffold biomaterial, but further improvement of the hemocompatibility of a PCL film surface is still needed for wide biomedical applications. In this work, the PCL film surface was functionalized with zwitterionic poly(3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate) (P(DMAPS)) brushes via surface-initiated atom transfer radical polymerization (ATRP) for enhancing hemocompatibility. Kinetics study revealed an approximately linear increase in graft yield of the functional P(DMAPS) brushes with polymerization time. The blood compatibilities of the modified PCL film surfaces were studied by platelet adhesion tests of platelet-rich plasma and human whole blood, hemolysis assay, and plasma recalcification time (PRT) assay. The improvement of hemocompatibility is dependent on the coverage of the grafted P(DMAPS) brushes on the PCL film. Lower or no platelet and blood cell adhesion was observed on the P(DMAPS)-grafted film surfaces. The P(DMAPS) grafting can further decrease hemolysis and enhance the PRT of the PCL surface. With the versatility of surface-initiated ATRP and the excellent hemocompatibility of zwitterionic polymer brushes, PCL films with desirable blood properties can be readily tailored to cater to various biomedical applications.  相似文献   

17.
Thermal degradation characteristic of polyphenylenes is an important issue for developing a rational technology of polymer processing and applications. In this study, we discussed thermal degradation of polyphenylenes (PP) with poly(ɛ-caprolactone) (PCL) and/or PCL/polystyrene copolymers (PSt) prepared by combined controlled polymerization and cross-coupling processes via direct pyrolysis mass spectrometry. When PP-graft-PCL/PSt copolymers were considered, thermally less stabile PCL side chains decomposed in the first step. In the second stage of pyrolysis, the decomposition of the polystyrene chains has taken place. A slight increase in thermal stability of PCL chains for PP-graft-PCL/PSt copolymers was noted compared to copolymer PP-graft-PCL due to the interaction between PSt and PCL chains. This interaction was stronger when PSt chains were linked to the 2-position of the 1,4-phenylene ring.  相似文献   

18.
生物可降解聚磷腈接枝聚酯共聚物的合成和表征   总被引:5,自引:0,他引:5  
初步探索了利用酯交换方法制备聚磷腈接枝聚酯共聚物的可能性 .实验发现 ,利用聚酯的端羟基与甘氨酸乙酯全取代的聚磷腈进行酯交换反应 ,是可以获得聚磷腈接枝聚酯共聚物的 .但这种制备过程 ,不仅要求聚酯材料的热稳定性相对较好 ,以及融体粘度较低 ,还要求氨基酸酯取代聚磷腈的热稳定性较好 ,才能获得比较满意的结果 .因此此法更适宜于制备聚磷腈接枝聚己内酯共聚物 ,而且聚己内酯的分子量不宜超过 80 0 0 .  相似文献   

19.
通过三甲基碘硅烷与聚二(2-甲氧基乙氧基)膦腈侧链上的醚键反应后水解得到侧链含部分羟基的聚膦腈,然后利用聚膦腈的侧链羟基在异辛酸亚锡催化作用下,引发己内酯单体开环聚合制备了聚膦腈-g-聚己内酯共聚物.该共聚物中聚己内酯链段的接枝率和侧链长度可通过改变三甲基碘硅烷和己内酯单体的投料来控制.  相似文献   

20.
Efficient local gene transfection on a tissue scaffold is dependent on good cell-adhesion characteristics. In this work, the thermo-responsive gelatin-functionalized polycaprolactone (PCL) films were proposed for improvement of cell adhesion and intelligent recovery of gene-transfected cells. Functional copolymer brushes (PCL-g-P(NIPAAm-co-MAAS)) were first prepared via surface-initiated ATRP of N-isopropylacrylamide (NIPAAm) and methacrylic acid sodium salt (MAAS) from the initiator-funcationalized PCL surfaces. The pendant carboxyl end-groups of the PCL-g-P(NIPAAm-co-MAAS) surface were subsequently coupled with gelatin via carbodiimide chemistry to produce the thermo-responsive gelatin-functionalized PCL surface. The thermo-responsive gelatin-functionalized PCL film surface can improve cell adhesion and proliferation above the LCST of P(NIPAAm) without destroying cell detachment properties at lower temperatures. The dense transfected cells can be recovered simply by lowering culture temperature. The thermo-responsive gelatin-functionalized PCL films are potentially useful as intelligent adhesion modifiers for directing cellular functions within tissue scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号