首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
半导体光催化技术不仅可以将太阳能转化为化学能,还可以直接降解和矿化有机污染物,因此其在抑制环境污染和解决能源短缺方面具有广阔的应用前景。类石墨相氮化碳(g-C3N4)具有独特的电子能带结构、优异的热稳定性以及化学稳定性,因此g-C3N4作为一种廉价的无金属光催化剂被广泛应用于光解水制氢产氧、污染物降解、光催化CO2还原、抗菌和有机官能团选择性转换等领域。然而,传统热缩聚法合成的g-C3N4光催化剂比表面积小、禁带宽度大、光生电子-空穴易于复合、光生载流子传输慢,抑制了其光催化活性。为了进一步提高g-C3N4的光催化活性,出现了多种改性方法。本文针对g-C3N4光催化剂的改性研究,综述了近年来国内外在g-C3N4光催化剂改性方面的重要研究进展,如采用模板法优化g-C3N4的纳米结构、元素掺杂及共聚合调控g-C3N4的能带结构、贵金属沉积或半导体复合提高光生载流子分离效率等。最后,本文还展望了g-C3N4光催化剂在改性方面的未来发展趋势。  相似文献   

2.
近年来,随着一次能源过度消耗所带来的能源和环境问题日益突出,开发廉价、可持续的清洁能源备受关注.光催化分解水制氢可利用太阳能普遍率高和几乎免费等特点制取燃烧热值高、燃烧产物无污染的氢气能源.自从1972年日本的Fujishima教授和Honda教授首次发现TiO2单晶电极光催化分解水可以产生氢气以来,光催化制氢被认为是实现可持续制氢最有潜力的方法之一.有效地将太阳能转换为化学能的关键是设计高效的电荷分离和运输结构.然而,现有的大多数半导体光催化剂因缺少活性位点、光生载流子易复合等缺点而无法达到较高的转换效率.因此,如何提高半导体光催化产氢的转换效率是现阶段面对的重要问题.在众多解决方法中,助催化剂的引入可以为光催化制氢反应增加活性位点,促进光生载流子的有效分离,进而有效地提高半导体光催化产氢速率.本文总结了多种不同类型的助催化剂应用于光催化产氢研究的最新进展,详细讨论了助催化剂在增强光吸收、提供活性位点、增加催化剂稳定性和促进电荷分离等方面的作用,阐明了助催化剂在光催化分解水制氢中的反应机理,同时还提出了光催化制氢的未来研究和预测.本文将助催化剂分为以下几种类别进...  相似文献   

3.
卤氧化铋复合物光催化剂   总被引:2,自引:1,他引:1  
崔文权 《分子催化》2013,(5):483-492
利用半导体光催化降解有机污染物与分解水制氢对于解决能源短缺与环境污染这一世界性难题具有重要意义,引起了人们的重视.传统的光催化剂TiO2存在可见光利用率低与光生载流子的复合率高等问题[1-3],因此寻找新型高效光催化剂的工作迫  相似文献   

4.
氢的能量密度高,易于储存和运输,因此,人工制氢已成为解决能源危机和环境污染问题的有效途径之一,开发可持续、温和、高效的制氢方法受到了广泛关注.在众多的制氢方法中,光催化水分解制氢已发展成为一种理想的制氢途径.然而受制于光催化剂的光响应范围窄、电荷分离效率低和活性位点少等问题,目前的光催化分解水制氢效率仍然处于一个较低水平,严重限制了其实际应用,因此,探究高效的光催化分解水材料的新体系与新机制成为解决上述问题的核心任务.ZnIn2S4是一种典型的具有可见光活性和化学稳定性的半导体,但由于光生电子的快速复合和严重的光腐蚀限制了其在光催化中的实际应用.本文采用界面工程,将ZnIn2S4,g-C3N4和Ti3C2 MXene材料耦合,设计构建了具有双异质结的2D/2D/2D三明治结构ZnIn2S4/g-C3N4/Ti3  相似文献   

5.
利用半导体光催化技术将太阳能转化为化学能或直接降解和矿化有机污染物,是解决能源短缺和环境污染等问题的有效途径。聚合物类石墨相氮化碳(g-C3N4)具有类似石墨烯的结构,由于其优异的化学稳定性和独特的电子能带结构,可作为太阳能转化、环境污染物降解的催化剂而得到了广泛关注。g-C3N4制备原料便宜易得、制备方法简单,可作为廉价、稳定、不含金属的可见光光催化剂应用于光催化降解污染物、水分解制氢制氧及有机合成领域。然而光生电荷易复合,使得g-C3N4的催化活性还不能满足大规模应用的需求。本文针对g-C3N4光催化活性的提高,综述了国内外在g-C3N4复合改性方面的重要研究进展,如金属/非金属掺杂、半导体复合、表面金属沉积等,并讨论了复合物的催化机理。  相似文献   

6.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

7.
氢能是实现碳中和目标的关键能源之一.光催化分解水制氢是一项绿色制氢技术,自从20世纪80年代日本科学家Honda和Fujishima首次发现了TiO2电极上的光电解水产氢以来,该技术已成为了全世界关注的研究方向.负载助催化剂能够提高电荷分离、降低过电势/活化能和加快表面反应,作为一种有效的改性策略被广泛地用于提高光催化分解水制氢效率.助催化剂的性能在很大程度上依赖其沉积方式,光沉积有助于加快光生电子-空穴对从光催化剂向助催化剂的转移,大幅改善了电荷的分离和传输效率,显著提升了催化剂的光催化性能.同时,该策略操作简单、条件温和以及无需额外添加氧化还原试剂来实现助催化剂的生成.从目前报道的助催化剂光沉积研究中可以发现,贵金属基助催化剂的光沉积在光催化分解水反应中已被广泛研究,然而贵金属价格昂贵、储量稀少,极大限制了其在大规模能源生产中的应用.为此,光沉积地球储量丰富的非贵金属助催化剂受到了研究者高度重视,近年来也取得了一些重要的进展,但尚未有综述进行报道.本文综述了近年来光沉积非贵金属光催化分解水助催化剂的研究进展.总结了非贵金属水分解助催化剂光沉积的基础,包括光沉积...  相似文献   

8.
孟爱云  周双  温达  韩培刚  苏耀荣 《催化学报》2022,(10):2548-2557
光催化分解纯水制氢在利用太阳能制备清洁能源方面极具潜力,寻找高效的光催化剂是实现其实际应用的关键因素.高效的光催化剂需同时具备宽光谱吸收、低载流子复合率以及足够强的氧化还原能力等条件.然而,具有强氧化还原能力的光催化剂通常具有较高的导带和较低的价带位置,导致其带隙较宽,光吸收范围缩窄,因此,单一的光催化剂难以同时满足宽光谱吸收和强氧化还原能力也难以实现高效的光催化纯水分解制氢.相比之下,梯型异质结可以将两种带隙适宜、能带结构匹配的光催化剂集成在一起,在保持原本光催化剂的强氧化还原能力的同时也能充分地利用太阳光,因此梯型异质结的研究受到广泛关注.目前报道的梯型异质结光催化剂的可见光催化分解纯水制氢效率仍然很低,并且大部分的材料都是在全光谱条件下进行测试的,因此有必要开发在可见光下具有高活性的梯型异质结复合光催化剂.本文报道了一种具有可见光响应的新型g-C3N4/CoTiO3复合梯型异质结光催化剂,在不添加牺牲剂的情况下,成功实现了可见光催化分解纯水制氢气.光催化测试结果表明,在可见光(λ>400 nm)照射下,当Co...  相似文献   

9.
近年来,随着全球科学技术的进步和工业的不断发展,人们的经济生活水平有了极大的提高,但同时也造成能源短缺和环境污染问题,成为21世纪制约经济和社会进一步发展的严重瓶颈,因此开发和研究环保和可再生的绿色能源技术是一项紧迫任务.自首次报道用二氧化钛为电极、采用光电化学分解水制氢之后,光催化分解水制氢引起了人们极大的兴趣,并被认为是缓解全球能源问题的最有希望的解决方案之一.其中,实现有效的太阳能制氢生产中最关键因素是设计稳定、高效和经济的光催化剂,并且能够利用可见光区进行工作(入射到地球上46%的太阳光谱是可见光).聚合物石墨相氮化物(g-C_3N_4)作为一种对可见光响应的新型无机非金属半导体光催化剂,被认为是一种"可持续"有机半导体材料,目前已并被广泛应用于各种光催化反应中.但是由于其光生电子-空穴在动力学上具有相对较大的复合速率,单纯g-C_3N_4的光催化活性远远达不到人们的要求.因此,应该尽可能的提高电荷转移动力学来抑制g-C_3N_4中光生电荷的复合,从而提高光生电荷从g-C_3N_4转移至反应位点的迁移速率.在前期研究的基础上,本文利用钒氧酞菁(VOPc)分子通过p-p相互作用以修饰g-C_3N_4的表面和电子结构,从而提高其光生电子-空穴的分离效率,最终极大提升其可见光光催化制氢性能.本文采用紫外可见光谱(UV-vis),高分辨透射电镜(HRTEM),傅里叶变换红外光谱(FT-IR), X-射线能谱(XPS),稳态光致发光光谱(PL),时间分辨光致发光光谱(TRPL),光电流和阻抗等一系列表征手段研究了VOPc/g-C_3N_4(VOPc/CN)复合催化剂的结构和性质.FT-IR, XPS及mapping等结果表明, VOPc分子已经成功引入到g-C_3N_4表面且未对其晶相、电子结构及其纳米片结构产生显著影响;UV-vis结果显示, VOPc分子成功引入并通过非共价键的p-p作用连接.总之,引入VOPc分子即拓展了催化剂对可见光的响应区域,又有利于光生载流子的传递和光生电子-空穴对的有效分离.当引入4wt%的VOPc分子时, VOPc/CN复合光催化剂的产氢速率增加至65.52μmolh-1, 420 nm处的量子效率高达6.29%,是单纯g-C_3N_4的6倍.此外,该催化剂在可见光下连续照射反应20 h后,其光催化活性几乎没有降低,表现出良好的光化学稳定性.由于两者LUMO和HOMO轨道之间的良好匹配,在光催化过程中光生电子-空穴在VOPc和g-C_3N_4之间实现了空间分离,有效阻止了光生电子-空穴对的复合,因而g-C_3N_4光催化制氢性能显著提升.同时对比了利用NiS和Ni Px做助剂的g-C_3N_4的可见光光催化制氢性能.结果显示, VOPc/CN复合光催化剂具有较好的光催化性能.总之,本文通过一种简单、经济、有效的方法将两种新兴的功能材料有机地复合在一起,用于可见光照射下高效光催化制氢,为以后合理地开发用于太阳能转换的更为高效经济的材料提供了一个新的思路.  相似文献   

10.
纳米片与空心球上之间的合理界面调控是开发高效太阳能制氢光催化剂的潜在策略。在各类光催化材料中,金属硫化物由于具有相对较窄的带隙和优越的可见光响应能力而被广泛研究。ZnIn2S4是一种层状的三元过渡金属半导体光催化剂,其带隙可控(约2.4 eV)。在众多金属硫化物光催化剂中,ZnIn2S4引起了广泛兴趣。然而,单纯的ZnIn2S4光催化活性仍然相对较差,主要是因为光生载流子的复合率较高、迁移速率较慢。在半导体光催化剂上负载助催化剂是提升光催化剂性能的一种有效方法,因为它不仅可以加速光生电子和空穴的分离,而且还可以降低质子还原反应的活化能。作为一种三元过渡金属硫化物,NiCo2S4表现出较高的导电性、较低的电负性、丰富的氧化还原特性以及优越的电催化活性。这些特性表明,NiCo2S4可以作为光催化制氢的助催化剂,以加速电荷分离和转移。此外,NiCo2S4和ZnIn2S4都属于三元尖晶石的晶体结构,这可能有助于构建具有紧密界面接触的NiCo2S4/ZnIn2S4复合物,从而提高光催化性能。本文中,将超薄ZnIn2S4纳米片原位生长到非贵金属助催化剂NiCo2S4空心球上,形成具有强耦合界面和可见光吸收的NiCo2S4@ZnIn2S4分级空心异质结构光催化剂。最优NiCo2S4@ZnIn2S4复合样品(NiCo2S4含量:ca. 3.1%)的析氢速率高达78 μmol·h-1,约是纳米片组装ZnIn2S4光催化剂析氢速率的9倍、约是1% (w, 质量分数)Pt/ZnIn2S4样品析氢速率的3倍。此外,该复合光催化剂在反应中表现出良好的稳定性。荧光和电化学测试结果表明,NiCo2S4空心球是一种有效的助催化剂,可促进光生载流子的分离和传输,并降低析氢反应的活化能。最后,提出了NiCo2S4@ZnIn2S4光催化析氢的可能反应机理。在NiCo2S4@ZnIn2S4复合光催化剂中,具有高导电性的NiCo2S4助催化剂可快速接受ZnIn2S4上的光生电子,用以还原质子生成氢气,而电子牺牲剂TEOA捕获光生空穴,进而完成光催化氧化还原循环。该研究有望为基于纳米片为次级结构的分级空心异质结光催化剂的设计合成及其光催化制氢研究提供一定的指导。  相似文献   

11.
氢气是一种清洁能源,利用太阳能进行光催化分解水产氢,因为节能和环保,吸引了国内外学者的广泛关注.但是,半导体光催化材料普遍存在可见光吸收范围窄和光生载流子易复合等问题,导致光催化效率不高.半导体耦合是拓展光吸收范围,并促进光生载流子空间分离的有效策略之一.能带相互交错的两种半导体复合,可以形成传统的Ⅱ型异质结,但是这种耦合方式削弱了光生电荷的氧化还原能力.相对传统Ⅱ型异质结光催化材料的不足,余家国教授提出了S型异质结的概念,它通常由两种n型半导体光催化剂组成,其中能带位置较高的为还原型光催化剂(RP),能带位置较低的是氧化型光催化剂(OP).形成S型异质结的关键是接触界面处存在由RP指向OP的内电场.受内建电场的驱动,S型异质结界面电子和空穴的流向与传统Ⅱ型光催化剂完全不同.由于保留了光生电子和空穴具有较强的还原和氧化能力,S型异质结在热力学上更有利于光催化氧化与还原反应.本文以硫代乙酰胺为硫源,采用低温溶剂热法(乙二醇中110℃反应2 h),在氧化型光催化剂(1D的WO3纳米棒)表面原位生长还原型光催化剂(2D的ZnIn2S4  相似文献   

12.
光催化完全分解水制氢是一个在粉末颗粒中实现多个串行物理化学步骤的复杂反应过程.这一过程在理论上具有体系简单、成本低、易操作等特点.然而,单步光激发系统中通常存在严重的光生载流子复合,这极大地制约了光催化的整体效率.利用能带结构不同的半导体合理构建异质结催化剂被认为是解决这一难题的重要途径之一.特别是近年来,S型异质结概念的提出为设计异质结结构以及分析不同半导体之间的载流子迁移问题提供了新的思路.本文以小粒径BiVO4/Bi0.6Y0.4VO4(BYV)为研究对象,首先利用"共沉淀-晶化"的方法制备了BYV固溶体纳米颗粒,随后利用压力诱导固溶体中四方相钒酸铋结构转变为单斜相,从而构建了BiVO4/Bi0.6Y0.4VO4复合光催化剂.XRD,Raman,HRTEM,HAADF-EDS的结果表明,经过高压后处理的BYV固溶体表面会出现粒径约为5 nm单斜钒酸铋纳米颗粒,实现了原位构建异质结结构.随后载流子动力学的相关表征以及Au选择性光沉积的结果表明,在光照条件下,所构建异质结中的光生电子主要分布在BYV固溶体上,而在表面形成的单斜相钒酸铋颗粒主要起到了类似"空穴"捕获的作用.这种在异质结中的载流子迁移路径符合S型异质结机理.电化学、稳态荧光光谱以及瞬态荧光光谱的表征结果表明,相比于单一固溶体,在S型异质结这种两步激发系统中所存在的载流子迁移路径能够大幅促进光生载流子分离,从而提高了小粒径BYV的光催化完全分解水性能.综上,构建S型异质结是一种解决小粒径光催化剂中载流子分离能力差的有效途径.同时,压力诱导材料晶型转变实现原位构建异质结的制备方法也为提高光生载流子分离效率提供了新的研究思路与机遇.  相似文献   

13.
光催化分解水制氢被认为是解决当前能源危机和环境污染问题的重要途径之一.在众多光催化剂中,石墨相氮化碳(g-C3N4)因其具有高的热稳定性、高的化学稳定性、合适的能带位置以及成本低廉等优点,受到光催化领域研究者的广泛关注,成为研究热点.然而,由于g-C3N4的禁带宽度较大(Eg=2.7 eV),导致其对可见光的响应较差,而且光生电子-空穴对在其中易于复合,从而导致其光催化产氢活性较低.已有研究表明,助催化剂可以有效地促进催化剂中光生载流子的分离和传输,从而提高光催化剂的光催化活性和氢气的产生速率.目前使用最广泛的助催化剂多为贵金属(Au,Ag,Pt和Pd等),然而贵金属储量低、成本高,极大地限制了其实际应用.因而,开发适用于光催化水分解制氢的非贵金属助催化剂成为该领域的研究热点.其中,用非贵金属助催化剂修饰g-C3N4制备高效光催化剂分解水制氢技术引起了人们极大的兴趣.过渡金属磷化物(FeP,CoP,CuP,NiP等)是一种有效的光催化辅助催化剂.然而,这些金属磷化物的合成通常使用有毒的有机磷化合物和白磷或涉高温煅烧.特别是在传统水热法制备金属磷化物过程中会释放大量氢气,导致容器内压力过高,造成较大的安全问题.据报道,在这些磷化物中,磷化钴由于其合适的能带结构和较高的导电性,作为光催化分解水助催化剂受到了广泛关注.然而,截至目前,关于磷化钴作为助催化剂用于光催化的实用技术报道很少,特别是在温和条件下制备磷化钴修饰的g-C3N4复合光催化剂的研究还有待进行.本文研究了以CoP作为助催化剂来改进g-C3N4(制备g-C3N4/CoP),并用于光催化水裂解制氢气.复合光催化剂g-C3N4/CoP经由两步反应合成.第一步采用尿素热分解法制备g-C3N4,第二步通过化学镀法将CoP修饰在g-C3N4表面.采用XRD,TEM,UV-DRS和XPS等手段表征了g-C3N4/CoP光催剂的性质.结果表明,CoP以量子点(QDs)形式均匀分布在g-C3N4表面,显著提高了g-C3N4的光催化活性.不同CoP负载量的样品中,g-C3N4/CoP-4%表现出优异的光催化活性,H2生成速率为936μmol g^-1 h^-1,甚至高于4%Pt负载的g-C3N4(H2的生成速率仅为665μmol g^-1 h^-1).从紫外可见光谱上看,g-C3N4在451 nm达到吸收波长上限,但与CoP复合后,g-C3N4/CoP-4%的吸收波长上限延展到497 nm.此外,光致发光和光电流测试结果证实,将CoP量子点负载到g-C3N4上不仅可以降低光生电荷-空穴对的复合,而且可以改善光生e--h+对的转移,从而提高光催化剂的产氢性能.这项工作为开发高效的非贵金属助催化剂修饰g-C3N4的技术提供了一个可行策略,所制材料在光催化制氢领域显示出潜在的应用前景.  相似文献   

14.
近年来,有机半导体因其独特可调的化学结构及光电性质越来越多地被应用于高效可见光催化领域。但是,有机材料本身化学键弱、载流子迁移率低,导致其催化效率低、稳定性差。因此,将有机半导体进行纳米组装及其构建异质结构,得到零维、一维、二维或多元复合纳米有机光催化剂,成为近几年的研究热点。零维粒子尺寸小、比表面积大;一维结构长程有序排列、表面缺陷密度降低;二维结构在增大表面活性位点的同时能最大限度地缩短电荷在材料内部的迁移距离而表现出更高的光生电荷利用率;纳米复合结构的异质界面可以有效促进光生电子-空穴对的分离,因此在提高光催化活性及稳定性方面具有重要意义。同时,纳米有机光催化剂种类丰富,催化机理各不相同,因此被广泛应用于分解水或空气中污染物的光催化领域。本综述中归纳了各类纳米有机光催化剂的制备方法、结构特性以及光催化应用,同时对多种光催化机制进行了介绍,并对其应用前景进行了展望。  相似文献   

15.
郄佳  李明  刘利  梁英华  崔文权 《化学进展》2016,28(10):1569-1577
能源短缺和环境恶化是人类社会快速发展面临的重大难题。太阳能作为一种清洁无污染的理想新型能源,具有取之不尽、用之不竭的特点,是实现可持续发展的最佳能源选择。半导体光催化可以直接利用太阳光进行催化反应,得到了广泛关注。作为一种低成本无金属光催化剂,g-C3N4具有独特的电子能带结构、优良的化学稳定性和热力学稳定性,在光催化领域如分解水制氢制氧、降解有机污染物、CO2还原、抗菌和有机官能团选择性转换等方面表现出巨大的应用前景。目前g-C3N4光催化剂存在着如比表面积小、可见光利用率低、量子产率低和光生载流子易复合等问题,制约了其在光催化领域的应用。因此,提升g-C3N4光催化性能是光催化研究领域的重要课题。第一性原理具有半经验方法不可比拟的优势,已成为光催化研究领域计算和模拟的重要基础。基于密度泛函理论的第一性原理在光催化领域的广泛应用,为有效迅速地探求能够改善g-C3N4光催化性能的方法提供了明确的研究手段。本文从理论计算的角度综述了近年来在g-C3N4改性方面所取得的一些重要研究进展,主要包括元素掺杂、复合和形貌调控等改性手段。本文以g-C3N4改性光催化剂为研究对象,从电子性质、能带结构、光学性质和缺陷形成能的角度阐述了各种改性手段提高光催化活性的微观机理。最后,在总结前文所述各类改性研究的基础上,对g-C3N4改性光催化剂未来的发展趋势作出了展望。  相似文献   

16.
光催化是一种在能源和环境领域有着重要应用前景的绿色技术,在光照射下可将有机污染物彻底降解为二氧化碳和水,但因缺乏精确调控电荷流动的方法,导致大多数光催化剂活性不高.因此,促进光生电荷的高效分离一直是光催化研究的重要方向.目前多数电荷分离调控研究集中于表面修饰、表面缺陷设计、异质结构建等表面电荷分离改善策略,而对于体相电荷分离调控研究相对较少.卤氧化铋固溶体光催化材料由于独特的层状晶体结构、可调节的带隙结构和优化的电荷分离效率,近年来受到广泛关注.目前对固溶体的体相电荷分离机理尚不清楚.内电场作为一种新的增强光催化反应活性的有效调控途径,通过定向促进体相电荷的分离和转移,使光生载流子快速参与氧化还原反应.然而,通过调控内电场来增强卤氧化铋固溶体光催化活性的报道较少,且缺乏从理论和实验的角度对固溶体内电场大小以及电荷分离机理的分析.本文构建了具有相同形貌和晶体结构的Bi24O31ClxBr10-x固溶体光催化剂,并考察了其催化性能.密度泛函理论计算、开尔文探针力显微镜(KPFM)和Zeta电位测试结果表明,通过改变卤素类型和比例可增加晶体结构单元的不对称性,从而调节[Bi24O31]和[X]层之间的电势差,增强光催化材料的内电场强度,促进体相电荷分离和转移效率,进而提高酚类有机污染物的降解活性.光电化学测试发现,相较于Bi24O31Cl10和Bi24O31Br10,Bi24O31Cl4Br6固溶体体相电荷分离效率显著提高,表面和界面上的电荷转移效率以及载流子密度增加.Bi24O31Cl4Br6的载流子密度分别是Bi24O31Cl10和Bi24O31Br10的33.1倍和4.7倍,Bi24O31Cl4Br6固溶体降解双酚A活性分别是Bi24O31Cl10和Bi24O31Br10的6.21倍和2.71倍.此外,其它酚类的降解实验也证明了光催化活性和内电场强度以及电荷分离效率成正相关.综上所述,本文从内电场的角度揭示了固溶体策略对光催化性能增强的内在机理,这些发现将进一步加深对体相电荷运动行为的理解,为设计高活性光催化剂提供一条新的途径.  相似文献   

17.
研究了在不同的半导体体系(TiO2, CdS和C3N4)中, Ni2P光催化甲酸(HCOOH)分解制氢的助催化效应. 作为助催化剂, Ni2P与3种半导体形成的复合光催化剂均表现出良好的HCOOH分解制氢活性. Ni2P/TiO2, Ni2P/CdS, Ni2P/C3N4 3种光催化剂最优的产氢活性分别为41.69, 22.45和47.67 μmol·mg-1·h-1, 分别为纯TiO2, CdS和C3N4的3.8倍、 10倍和210倍, 表明Ni2P在光催化HCOOH分解制氢体系中具有普适性. 研究了光催化HCOOH分解制氢的机理, Ni2P的加入使光生电子从半导体转移至Ni2P, 提高了光生电子-空穴对的分离效率; Ni2P还促进了活性物种·OH的生成, 提高了光催化HCOOH分解的产氢速率.  相似文献   

18.
王佳琦  程浩  魏丁琼  李朝晖 《催化学报》2022,(10):2606-2614
光催化因其可以利用太阳能进行光解水产氢、CO2还原、降解有机污染物及有机物转化而被认为是解决当前能源危机和环境问题的一种有效手段.由于光催化反应是由光激发光催化材料生成光生载流子引发的,因此理想的光催化剂应当具有宽的光响应范围、低的光生载流子复合率和足够的氧化还原能力来进行表面反应.然而单一组分的半导体材料难以同时满足宽光谱响应(即窄带隙)和强氧化还原能力(即价带更正和导带更负).通过耦合两个具有可见光响应且交错能带排布的半导体来构建S型异质结,不仅能拓宽光催化剂的光吸收范围、促进电荷分离,还同时保留了两种半导体的强氧化还原能力,是发展高效光催化材料的一种有效途径.Cs2AgBiBr6的导带和价带分别位于-0.65 V vs.NHE和1.60 V vs.NHE,而Bi2WO6.的导带和价带分别为-0.4 V vs.NHE和2.4 V vs.NHE,两者能带位置匹配.因此,本文选择Cs2AgBiBr6和Bi2WO<...  相似文献   

19.
尚义  牛富军  沈少华 《催化学报》2018,39(3):502-509
光催化水分解反应是解决当前世界范围严峻的能源与环境问题的一种有效途径.光催化分解水过程可以分为产氢和产氧两个半反应.产氧反应过程复杂,动力学缓慢,是光催化分解水的限速步骤,因此需要探索性能优异的水氧化催化剂(WOCs)来提高产氧半反应的效率.钒酸铋近年来被广泛研究并应用于光催化产氧领域.钒酸铋拥有合适的带宽(2.4 eV)以及较好的稳定性,但是其应用受到其严重的电子空穴复合率、较低的电荷传输能力以及较差的反应动力学的限制.以往研究表明,通过构建复合光催化体系可以有效促进光生电荷的分离与传输,提高材料的光催化性能.因此,我们提出构建新型的BiVO_4/M(dca)_2(M=Co,Ni)复合体系,其中,BiVO_4作为光敏化剂,M(dca)_2作为水氧化催化剂.红外测试和紫外可见测试的结果表明,M(dca)_2通过物理吸附的方式附着在BiVO_4表面,形成BiVO_4/M(dca)_2复合光催化剂体系.复合体系的产氧活性相较于纯BiVO_4有明显的提升.光催化产氧测试结果表明,BiVO_4/Co(dca)2和BiVO_4/Ni(dca)_2复合体系的产氧活性分别可达508.1和297.7μmol/(h·g),而纯BiVO_4的产氧活性只有252.2μmol/(h·g).进一步的稳定性测试结果表明,BiVO_4/Co(dca)2复合体系在30 h的测试过程中能够保持稳定的活性.ICP-MS和XPS的表征结果证明了催化过程中分子催化剂良好的稳定性,排除了反应过程中生成氧化物进而促进产氧活性的可能.对该复合体系的一系列电化学表征证明,M(dca)_2有效改善了BiVO_4/电解液界面的电荷传输性能,从而促进了光催化产氧性能.其中,莫特-肖特基测试表明,M(dca)_2的加入增大了能带弯曲,提高了空穴传递的驱动力,阻抗谱的测试证明了复合体系具有较低的界面电阻,有利于载流子的迁移.通过对复合体系光生载流子分离和注入效率的表征,可以证明,在BiVO_4/M(dca)_2复合体系中,光生空穴能够有效地从BiVO_4迁移到M(dca)_2,进而参与光催化产氧反应并且光催化活性有明显的提升.其中,由于Co(dca)2能够更加有效地改善BiVO_4/电解质的水氧化反应动力学过程,其活性显著优于BiVO_4/Ni(dca)_2体系和纯BiVO_4.此外,基于实验结果和各项表征,我们进一步提出了BiVO_4/Co(dca)2光催化产氧反应的反应机理:光照条件下,BiVO_4中电子跃迁至导带,进而被牺牲剂消耗,而价带上的空穴则传递至分子催化剂进行化学反应,其中,分子催化的反应机理遵循水亲核攻击的模型.  相似文献   

20.
光催化制氢作为一种具有前景的能源转化方式,受到了广泛关注。但是光催化过程中的三个步骤(光吸收、载流子分离、表面反应)效率较低,目前难以实现工业应用。研究者们对光催化的机理进行了深入研究,并提出了多种策略来调节半导体光催化剂的物理化学性质,以期有效提高光催化剂对可见光的吸收,降低光生载流子的复合,加速表面反应。上述策略包括:制造缺陷、局域表面等离子体共振、元素掺杂、异质结构建、助催化剂负载等。深入研究上述改性策略能够为设计制备高效稳定的光催化剂提供指导。因此,本综述聚焦于优化光吸收、载流子分离、表面反应的机理和改性光催化剂的制氢应用,并对构建高效制氢光催化剂的趋势做出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号