首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rheumatoid arthritis (RA) and osteoarthritis (OA), two common types of arthritis, affect the joints mainly by targeting the synovium and cartilage. Increasing evidence indicates that a significant network connects synovitis and cartilage destruction during the progression of arthritis. We recently demonstrated that hypoxia-inducible factor (HIF)-2α causes RA and OA by regulating the expression of catabolic factors in fibroblast-like synoviocytes (FLS) or chondrocytes. To address the reciprocal influences of HIF-2α on FLS and chondrocytes, we applied an in vitro co-culture system using a transwell apparatus. When co-cultured with HIF-2α-overexpressing chondrocytes, FLS exhibited increased expression of matrix metalloproteinases and inflammatory mediators, similar to the effects induced by tumor-necrosis factor (TNF)-α treatment of FLS. Moreover, chondrocytes co-cultured with HIF-2α-overexpressing FLS exhibited upregulation of Mmp3 and Mmp13, which is similar to the effects induced by interleukin (IL)-6 treatment of chondrocytes. We confirmed these differential HIF-2α-induced effects via distinct secretory mediators using Il6-knockout cells and a TNF-α-blocking antibody. The FLS-co-culture-induced gene expression changes in chondrocytes were significantly abrogated by IL-6 deficiency, whereas TNF-α neutralization blocked the alterations in gene expression associated with co-culture of FLS with chondrocytes. Our results further suggested that the observed changes might reflect the HIF-2α-induced upregulation of specific receptors for TNF-α (in FLS) and IL-6 (in chondrocytes). This study broadens our understanding of the possible regulatory mechanisms underlying the crosstalk between the synovium and cartilage in the presence of HIF-2α, and may suggest potential new anti-arthritis therapies.  相似文献   

2.
Callicarpalongissima has been used as a Yao folk medicine to treat arthritis for years in China, although its active anti-arthritic moieties have not been clarified so far. In this study, two natural phenolic diterpenoids with anti-rheumatoid arthritis (RA) effects, rosmanol and carnosol, isolated from the medicinal plant were reported on for the first time. In type II collagen-induced arthritis DBA/1 mice, both rosmanol (40 mg/kg/d) and carnosol (40 mg/kg/d) alone alleviated the RA symptoms, such as swelling, redness, and synovitis; decreased the arthritis index score; and downregulated the serum pro-inflammatory cytokine levels of interleukin 6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor α (TNF-α). Additionally, they blocked the activation of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)/c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways. Of particular interest was that when they were used in combination (20 mg/kg/d each), the anti-RA effect and inhibitory activity on the TLR4/NF-κB/MAPK pathway were significantly enhanced. The results demonstrated that rosmanol and carnosol synergistically alleviated RA by inhibiting inflammation through regulating the TLR4/NF-κB/MAPK pathway, meaning they have the potential to be developed into novel, safe natural combinations for the treatment of RA.  相似文献   

3.
The intestinal absorption of hydrophobic compounds is severely influenced by their transportation rate through the unstirred water layer in the intestinal lumen. A member of the vitamin E family, α-Tocotrienol (α-T3) has remarkable pharmacological effects, but its intestinal absorption is hampered due to its hydrophobicity. Here, we prepared three ester derivatives of 2R-α-T3, and we selected a suitable prodrug compound using rat plasma and liver microsomes. The micellization profile of the selected compound in the presence of taurocholic acid (TCA) was evaluated. After gastrostomy administration of the prodrug candidate or α-T3 solution containing TCA, AUC values were determined for α-T3 in plasma obtained from bile duct-ligated rats. Among the three types in the efficiency of the reconversion to the parent drug, α-T3 N,N-dimethylglycinate (α-T3DMG) was the best prodrug; α-T3DMG formed mixed micelles via ion pairs with anionic TCA. The solubility of α-T3DMG in n-octanol/water depended on its ratio to TCA. The AUC after α-T3DMG administration to ligated rats was 2-fold higher than that after α-T3 administration, suggesting a smooth interaction with intrinsic bile acids. In conclusion, utilization of the prodrug synthesized using N,N-dimethylglycine ester may be a beneficial approach to promote intestinal absorption of α-T3 via self-micellization with intrinsic bile acid.  相似文献   

4.
Alzheimer’s disease (AD) is a neurodegenerative disorder with an increasing need for developing disease-modifying treatments as current therapies only provide marginal symptomatic relief. Recent evidence suggests the γ-aminobutyric acid (GABA) neurotransmitter system undergoes remodeling in AD, disrupting the excitatory/inhibitory (E/I) balance in the brain. Altered expression levels of K-Cl-2 (KCC2) and N-K-Cl-1 (NKCC1), which are cation–chloride cotransporters (CCCs), have been implicated in disrupting GABAergic activity by regulating GABAA receptor signaling polarity in several neurological disorders, but these have not yet been explored in AD. NKCC1 and KCC2 regulate intracellular chloride [Cl]i by accumulating and extruding Cl, respectively. Increased NKCC1 expression in mature neurons has been reported in these disease conditions, and bumetanide, an NKCC1 inhibitor, is suggested to show potential therapeutic benefits. This study used primary mouse hippocampal neurons to explore if KCC2 and NKCC1 expression levels are altered following beta-amyloid (Aβ1-42) treatment and the potential neuroprotective effects of bumetanide. KCC2 and NKCC1 expression levels were also examined in 18-months-old male C57BL/6 mice following bilateral hippocampal Aβ1-42 stereotaxic injection. No change in KCC2 and NKCC1 expression levels were observed in mouse hippocampal neurons treated with 1 nM Aβ1-42, but NKCC1 expression increased 30-days post-Aβ1-42-injection in the CA1 region of the mouse hippocampus. Primary mouse hippocampal cultures were treated with 1 nM Aβ1-42 alone or with various concentrations of bumetanide (1 µM, 10 µM, 100 µM, 1 mM) to investigate the effect of the drug on cell viability. Aβ1-42 produced 53.1 ± 1.4% cell death after 5 days, and the addition of bumetanide did not reduce this. However, the drug at all concentrations significantly reduced cell viability, suggesting bumetanide is highly neurotoxic. In summary, these results suggest that chronic exposure to Aβ1-42 alters the balance of KCC2 and NKCC1 expression in a region-and layer-specific manner in mouse hippocampal tissue; therefore, this process most likely contributes to altered hippocampal E/I balance in this model. Furthermore, bumetanide induces hippocampal neurotoxicity, thus questioning its suitability for AD therapy. Further investigations are required to examine the effects of Aβ1-42 on KCC2 and NKCC1 expression and whether targeting CCCs might offer a therapeutic approach for AD.  相似文献   

5.
Previously synthesized N-butyrylated hyaluronic acid (BHA) provides anti-inflammatory effects in rat models of acute gouty arthritis and hyperuricemia. However, the mechanism of action remains to be elucidated. Herein, the anti-inflammatory and antioxidative activities of BHA and the targeted signaling pathways were explored with LPS-induced RAW264.7 and an adjuvant-induced inflammation in a rat model. Results indicated that BHA inhibited the generation of pro-inflammatory cytokines TNFα, IL-1β and IL-6, reduced ROS production and down-regulated JAK1-STAT1/3 signaling pathways in LPS-induced RAW264.7. In vivo, BHA alleviated paw and joint swelling, decreased inflammatory cell infiltration in paw tissues, suppressed gene expressions of p38 and p65, down-regulated the NF-κB and MAPK signaling pathways and reduced protein levels of TNFα, IL-1β and IL-6 in joint tissues of arthritis rats. This study demonstrated the pivotal role of BHA in anti-inflammation and anti-oxidation, suggesting the potential clinical value of BHA in the prevention of inflammatory arthritis and is worthy for development as a new pharmacological treatment.  相似文献   

6.
Arthritis is a chronic inflammatory disease accompanied by pathological reactions such as swelling, redness, fever, and pain in various joint areas. The drugs currently available to treat arthritis are associated with diverse side-effects. Therefore, there is a need for safer and more effective treatments to alleviate the inflammation of arthritis with fewer side-effects. In this study, a new sterol, Δ8(14)-ergostenol, was discovered, and its glycosides were synthesized and found to be more efficient in terms of synthesis or anti-inflammatory activity than either spinasterol or 5,6-dihydroergosterol is. Among these synthetic glycosides, galactosyl ergostenol inhibited the expression of inflammatory mediators in TNF-α-stimulated FLS and TNF-α-induced MMPs and collagen type II A1 degradation in human chondrocytes. These results suggest the new galactosyl ergostenol as a treatment candidate for arthritis.  相似文献   

7.
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disorder that causes the immune system to attack the joints. Transforming growth factor-β1 (TGF-β1) is a secreted protein that promotes differentiation of synovial fibroblasts to α-smooth muscle actin (α-SMA)-positive myofibroblasts to repair the damaged joints. Synovial fluid from patients with RA (RA-SF) induced expression of α-SMA in human adipose tissue-derived mesenchymal stem cells (hASCs). RA-SF-induced α-SMA expression was abrogated by immunodepletion of TGF-β1 from RA-SF with anti-TGF-β1 antibody. Furthermore, pretreatment of hASCs with the TGF-β type I receptor inhibitor SB431542 or lentiviral small hairpin RNA-mediated silencing of TGF-β type I receptor expression in hASCs blocked RA-SF-induced α-SMA expression. Small interfering RNA-mediated silencing of Smad2 or adenoviral overexpression of Smad7 (an inhibitory Smad isoform) completely inhibited RA-SF-stimulated α-SMA expression. These results suggest that TGF-β1 plays a pivotal role in RA-SF-induced differentiation of hASCs to α-SMA-positive cells.  相似文献   

8.
9.
Rheumatoid arthritis (RA) is a chronic inflammatory disease mainly affecting the synovial joints. A highly potent antagonist of C-C chemokine receptor 5 (CCR5), maraviroc (MVC), plays an essential role in treating several infectious diseases but has not yet been evaluated for its potential effects on RA development. This study focused on evaluating the therapeutic potential of MVC on collagen-induced arthritis (CIA) in DBA/1J mice. Following CIA induction, animals were treated intraperitoneally with MVC (50 mg/kg) daily from day 21 until day 35 and evaluated for clinical score and histopathological changes in arthritic inflammation. We further investigated the effect of MVC on Th9 (IL-9, IRF-4, and GATA3) and Th17 (IL-21R, IL-17A, and RORγT) cells, TNF-α, and RANTES in CD8+ T cells in the spleen using flow cytometry. We also assessed the effect of MVC on mRNA and protein levels of IL-9, IL-17A, RORγT, and GATA3 in knee tissues using RT-PCR and western blot analysis. MVC treatment in CIA mice attenuated the clinical and histological severity of inflammatory arthritis, and it substantially decreased IL-9, IRF4, IL-21R, IL-17A, RORγT, TNF-α, and RANTES production but increased GATA3 production in CD8+ T cells. We further observed that MVC treatment decreased IL-9, IL-17A, and RORγt mRNA and protein levels and increased those of GATA3. This study elucidates the capacity of MVC to ameliorate the clinical and histological signs of CIA by reducing pro-inflammatory responses, suggesting that MVC may have novel therapeutic uses in the treatment of RA.  相似文献   

10.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

11.
α-Cubebenoate derived from Schisandra chinensis has been reported to possess anti-allergic, anti-obesity, and anti-inflammatory effects and to exhibit anti-septic activity, but its anti-cancer effects have not been investigated. To examine the anti-cancer activity of α-cubebenoate, we investigated its effects on the proliferation, apoptosis, and metastasis of CT26 cells. The viabilities of CT26 cells (a murine colorectal carcinoma cell line) and HCT116 cells (a human colon cancer cell line) were remarkably and dose-dependently diminished by α-cubebenoate, whereas the viability of CCD-18Co cells (a normal human fibroblast cell line) were unaffected. Furthermore, α-cubebenoate treatment increased the number of apoptotic CT26 cells as compared with Vehicle-treated cells and increased Bax, Bcl-2, Cas-3, and Cleaved Cas-3 protein levels by activating the MAP kinase signaling pathway. α-Cubebenoate also suppressed CT26 migration by regulating the PI3K/AKT signaling pathway. Furthermore, similar reductions were observed in the expression levels of some migration-related proteins including VEGFA, MMP2, and MMP9. Furthermore, reduced VEGFA expression was found to be accompanied by the phosphorylations of FAK and MLC in the downstream signaling pathway of adhesion protein. The results of the present study provide novel evidence that α-cubebenoate can stimulate apoptosis and inhibit metastasis by regulating the MAPK, PI3K/AKT, and FAK/MLC signaling pathways.  相似文献   

12.
EGFR and Wnt/β-catenin signaling pathways play a prominent role in tumor progression in various human cancers including non-small-cell lung carcinoma (NSCLC). Transactivation and crosstalk between the EGFR and Wnt/β-catenin pathways may contribute to the aggressiveness of cancers. Targeting these oncogenic pathways with small molecules is an attractive approach to counteract various types of cancers. In this study, we demonstrate the effect of euphorbiasteroid (EPBS) on the EGFR and Wnt/β-catenin pathways in NSCLC cells. EPBS induced preferential cytotoxicity toward A549 (wildtype EGFR-expressing) cells over PC-9 (mutant EGFR-expressing) cells. EPBS suppressed the expression of EGFR, Wnt3a, β-catenin, and FZD-1, and the reduction in β-catenin levels was found to be mediated through the activation of GSK-3β. EPBS reduced the phosphorylation of GSK-3βS9 with a parallel increase in β-TrCP and phosphorylation of GSK-3βY216. Lithium chloride treatment increased the phosphorylation of GSK-3βS9 and nuclear localization of β-catenin, whereas EPBS reverted these effects. Forced expression or depletion of EGFR in NSCLC cells increased or decreased the levels of Wnt3a, β-catenin, and FZD-1, respectively. Overall, EPBS abrogates EGFR and Wnt/β-catenin pathways to impart its anticancer activity in NSCLC cells.  相似文献   

13.
Fatty acid synthase (FASN) is highly expressed in multiple types of human cancers and is recognized as one of the targets for treating cancer metastasis. α-Linolenic acid is an omega-3 essential fatty acid and it possesses various biological activities. The present study was designed to reveal the effects of α-linolenic acid on osteosarcoma and to reveal whether the mechanism of α-linolenic acid in anticancer activity may be related to FASN inhibition. The cytotoxicity of α-linolenic acid was assessed in osteosarcoma MG63, 143B, and U2OS cells. Cell viability was detected by the MTT assay. The protein expression level was detected by western blotting. Flow cytometry, Annexin V/propidium iodide dual staining, and Hoechst 33258 staining were performed to assess the apoptotic effects. Wound healing assay was applied to detect the inhibitory effect of α-linolenic acid on osteosarcoma cells migration. The results showed that α-linolenic acid downregulated FASN expression. α-Linolenic acid inhibited osteosarcoma cell proliferation and migration in a dose-dependent manner. In addition, α-linolenic acid regulated endoplasmic reticulum transmembrane receptors and signal protein expression in osteosarcoma cells. The findings of the present study suggested that α-linolenic acid suppresses osteosarcoma cell proliferation and metastasis by inhibiting FASN expression, which provides a basis as a potential target for osteosarcoma treatment.  相似文献   

14.
Gouty arthritis (GA) is a frequent inflammatory disease characterized by pain, swelling, and stiffness of joints. Neoastilbin is a flavonoid isolated from the rhizome of Smilax glabra, which possesses various anti-inflammatory effects. However, the mechanism of neoastilbin in treating GA has not yet been clarified. Thus, this study was to investigate the protective effects of neoastilbin in both monosodium urate (MSU) stimulated THP-1-derived macrophages and the animal model of GA by injecting MSU into the ankle joints of mice. The levels of key inflammatory cytokines in MSU stimulated THP-1-derived macrophages were detected by enzyme-linked immunosorbent assay (ELISA) kits. Protein expressions of nuclear factor kappa B (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome pathways were further detected by Western blotting. In addition, swelling degree of ankle joints, the levels of inflammatory factors, infiltration of inflammatory cells and the expressions of related proteins were determined. Swelling degree and histopathological injury in ankle joints of MSU-injected mice were significantly decreased after being treated with neoastilbin. Moreover, neoastilbin significantly diminished the secretion of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), suppressing the activation of NF-κB and NLRP3 inflammasome pathways in both MSU stimulated THP-1-derived macrophages and the mouse model of GA. In summary, neoastilbin could alleviate GA by inhibiting the NF-κB and NLRP3 inflammasome pathways, which provided some evidence for neoastilbin as a promising therapeutic agent for GA treatment.  相似文献   

15.
α-tocopherol (α-T) has the highest biological activity with respect to the other components of vitamin E; however, conventional formulations of tocopherol often fail to provide satisfactory bioavailability due to its hydrophobic characteristics. In this work, α-tocopherol-loaded nanoparticles based on chitosan were produced by membrane emulsification (ME). A new derivative was obtained by the cross-linking reaction between α-T and chitosan (CH) to preserve its biological activity. ME was selected as a method for nanoparticle production because it is recognized as an innovative and sustainable technology for its uniform-particle production with tuned sizes and high encapsulation efficiency (EE%), and its ability to preserve the functional properties of bioactive ingredients operating in mild conditions. The reaction intermediates and the final product were characterized by 1HNMR, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), while the morphological and dimensional properties of the nanoparticles were analyzed using electronic scanning microscopy (SEM) and dynamic light scattering (DLS). The results demonstrated that ME has high potential for the development of α-tocopherol-loaded nanoparticles with a high degree of uniformity (PDI lower than 0.2), an EE of almost 100% and good mechanical strength, resulting in good candidates for the production of functional nanostructured materials for drug delivery. In addition, the chemical bonding between chitosan and α-tocopherol allowed the preservation of the antioxidant properties of the bioactive molecule, as demonstrated by an enhanced antioxidant property and evaluated through in vitro tests, with respect to the starting materials.  相似文献   

16.
A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.  相似文献   

17.
18.
Endometriosis is an estrogen-linked gynecological disease defined by the presence of endometrial tissue on extrauterine sites where it forms invasive lesions. Alterations in estrogen-mediated cellular signaling seems to have an essential role in the pathogenesis of endometriosis. Higher estrogen receptor (ER)-β levels and enhanced ER-β activity were detected in endometriotic tissues. It is well known that ER-β interacts with components of the cytoplasmic inflammasome-3 (NALP-3), the NALP-3 activation increases interleukin (IL)-1β and IL-18, enhancing cellular adhesion and proliferation. Otherwise, the inhibition of ER-β activity suppresses the ectopic lesions growth. The present study aims to investigate the potential effect of α-lipoic acid (ALA) on NALP-3 and ER-β expression using a western blot analysis, NALP-3-induced cytokines production by ELISA, migration and invasion of immortalized epithelial (12Z) and stromal endometriotic cells (22B) using a 3D culture invasion assay, and matrix-metalloprotease (MMPs) activity using gelatin zymography. ALA significantly reduces ER-β, NALP-3 protein expression/activity and the secretion of IL-1β and IL-18 in both 12Z and 22B cells. ALA treatment reduces cellular adhesion and invasion via a lower expression of adhesion molecules and MMPs activities. These results provide convincing evidence that ALA might inhibit endometriosis progression.  相似文献   

19.
α-synuclein (α-syn) is a major culprit of Parkinson’s disease (PD), although lipoprotein metabolism is very important in the pathogenesis of PD. α-syn was expressed and purified using the pET30a expression vector from an E. coli expression system to elucidate the physiological effects of α-syn on lipoprotein metabolism. The human α-syn protein (140 amino acids) with His-tag (8 amino acids) was expressed and purified to at least 95% purity. Isoelectric focusing gel electrophoresis showed that the isoelectric point (pI) of α-syn and apoA-I were pI = 4.5 and pI = 6.4, respectively. The lipid-free α-syn showed almost no phospholipid-binding ability, while apoA-I showed rapid binding ability with a half-time (T1/2) = 8 ± 0.7 min. The α-syn and apoA-I could be incorporated into the reconstituted HDL (rHDL, molar ratio 95:5:1:1, palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I:α-syn with the production of larger particles (92 Å) than apoA-I-rHDL (86 and 78 Å) and α-syn-rHDL (65 Å). An rHDL containing both apoA-I and α-syn showed lower α-helicity around 45% with a red shift of the Trp wavelength maximum fluorescence (WMF) from 339 nm, while apoA-I-HDL showed 76% α-helicity and 337 nm of WMF. The denaturation by urea addition showed that the incorporation of α-syn in rHDL caused a larger increase in the WMF than apoA-I-rHDL, suggesting that the destabilization of the secondary structure of apoA-I by the addition of α-syn. On the other hand, the addition of α-syn induced two-times higher resistance to rHDL glycation at apoA-I:α-syn molar ratios of 1:1 and 1:2. Interestingly, low α-syn in rHDL concentrations, molar ratio of 1:0.5 (apoA-I:α-syn), did not prevent glycation with more multimerization of apoA-I. In the lipid-free and lipid-bound state, α-syn showed more potent antioxidant activity than apoA-I against cupric ion-mediated LDL oxidation. On the other hand, microinjection of α-syn (final 2 μM) resulted in 10% less survival of zebrafish embryos than apoA-I. A subcutaneous injection of α-syn (final 34 μM) resulted in less tail fin regeneration than apoA-I. Interestingly, incorporation of α-syn at a low molar ratio (apoA-I:α-syn, 1:0.5) in rHDL resulted destabilization of the secondary structure and impairment of apoA-I functionality via more oxidation and glycation. However, at a higher molar ratio of α-syn in rHDL (apoA-I:α-syn = 1:1 or 1:2) exhibited potent antioxidant and anti-glycation activity without aggregation. In conclusion, there might be a critical concentration of α-syn and apoA-I in HDL-like complex to prevent the aggregation of apoA-I via structural and functional enhancement.  相似文献   

20.
Flavonols possess several beneficial bioactivities in vitro and in vivo. In this study, two flavonols galangin and quercetin with or without heat treatment (100 °C for 15–30 min) were assessed for their anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated rat intestinal epithelial (IEC-6) cells and whether the heat treatment caused activity changes. The flavonol dosages of 2.5–20 μmol/L had no cytotoxicity on the cells but could enhance cell viability (especially using 5 μmol/L flavonol dosage). The flavonols could decrease the production of prostaglandin E2 and three pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and simultaneously promote the production of two anti-inflammatory cytokines IL-10 and transforming growth factor-β. The Western-blot results verified that the flavonols could suppress the LPS-induced expression of TLR4 and phosphorylated IκBα and p65, while the molecular docking results also illustrated that the flavonols could bind with TLR4 and NF-κB to yield energy decreases of −(21.9–28.6) kJ/mol. Furthermore, an inhibitor BAY 11-7082 blocked the NF-κB signaling pathway by inhibiting the expression of phosphorylated IκBα/p65 and thus mediated the production of IL-6/IL-10 as the flavonols did, which confirmed the assessed anti-inflammatory effect of the flavonols. Consistently, galangin had higher anti-inflammatory activity than quercetin, while the heated flavonols (especially those with longer heat time) were less active than the unheated counterparts to exert these target anti-inflammatory effects. It is highlighted that the flavonols could antagonize the LPS-caused IEC-6 cells inflammation via suppressing TLR4/NF-κB activation, but heat treatment of the flavonols led to reduced anti-inflammatory efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号