首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研发高效、稳定的电解水催化剂,我们以氧空位和磷掺杂为基础,通过原位浸泡生长和两步热处理的方法,在泡沫铁上合成具有氧空位和磷掺杂的纳米花结构作为析氢反应(HER)和析氧反应(OER)双功能电催化剂。CoFe2O4已被报道为一种很有前途的OER和氧还原反应(ORR)电催化剂,然而CoFe2O4在HER中表现出电导率差、电催化反应慢的特性。CoFe2O4中氧空位(Ov)的形成可以有效调控催化剂表面的电子结构,有助于产生更多的缺陷和空位,从而提高OER的活性。随后,引入磷原子填充在空位中,制备的P-Ov-CoFe2O4/IF在碱性电催化测试中展现出优异的HER和OER性能,在10 mA·cm-2电流密度下HER和OER过电位仅为54和191 mV,Tafel斜率分别为57和54 mV·dec-1,并具有良好的循环稳定性。  相似文献   

2.
杨越  续可  马雪璐 《化学进展》2023,(4):543-559
金属氧化物由于其良好的活性、选择性和稳定性,在实验和工业催化领域已被广泛研究,用于一些重要的反应过程如CO2还原、水煤气转化、氮还原反应、析氧反应等。现已证明,很多金属氧化物的缺陷是发生催化反应的活性位点,其中氧空位缺陷的作用最具代表性。氧空位缺陷作为一种重要的点缺陷可以影响材料的局域几何结构和电子结构,从而影响其催化活性,因此具有非常重要的研究意义。本文从金属氧化物中氧空位缺陷的形成机制出发,介绍其分类及调控策略,重点综述了氧空位缺陷在热催化、电催化和光催化反应中的作用特点及催化反应机制,最后对具有非金属空位缺陷催化剂的潜在应用及未来挑战进行了总结与展望。  相似文献   

3.
析氧反应(OER)在电化学能源存储与转化技术(例如,电解水与金属-空气电池)中扮演着至关重要的角色.OER涉及四个电子的连续转移,动力学较为缓慢,因此需要较高的过电位来驱动反应进行,这严重限制了其在电化学储能和转换系统中的应用.IrO2和RuO2等贵金属基催化剂资源稀缺、价格高昂,因此,开发高活性、高稳定性及低成本的OER电催化剂显得尤为重要,并且极具挑战.杂原子掺杂是一种有效提升过渡金属化合物OER电催化剂活性的策略,但是当前对其本征活性位点的识别及活性提升机制的研究仍然不足.本文提出了一种阳离子掺杂策略,通过引入金属阳离子调控多金属组分的电子结构,优化OER中间体吸附能,进而提升OER活性.通过简单的一步热解硫化钴镍双金属有机框架材料前驱体,成功制备了Ni掺杂CoS/氮掺杂介孔碳(Ni-CoS/NC)复合结构电催化剂;并采用循环伏安法研究了其电化学行为与OER性能,结合谱学研究结果与密度泛函理论(DFT)计算,从原子层面揭示了OER条件下真实活性位点及掺杂型电催化剂的活性提升机制.电化学研究结果表明,所制备Ni-CoS/NC催化剂在1.0...  相似文献   

4.
目前,为了有效解决电化学能量转化反应动力学过程缓慢和商业化应用等问题,需要大力提高催化剂的电催化活性和稳定性,并大幅降低贵金属催化剂的用量.通常,铂(Pt)基催化剂对燃料电池的氧还原反应(ORR)和水电解过程的氢析出反应(HER)表现出很高的活性.然而,对于高效的金属-空气电池和水电解装置,其中的氧析出反应(OER)则需要高活性的非Pt电催化剂来降低电化学过电位及提高其对高电位的耐受性.虽然相较于Pt催化剂,IrO2和RuO2等贵金属催化剂表现出了更高的OER活性,然而,它们的稳定性差,难以满足实际应用需求,严重阻碍了其在金属-空气电池和水电解中的应用.通常,Pt对OER的低效催化主要归因于在OER电催化过程中Pt与电解液直接接触,导致Pt表面快速被氧化,形成Pt氧化物(Pt+4O2和Pt+2O)层.形成的Pt氧化物对OER不起催化作用,从而降低了Pt的利用率和总的水电解效率.为了避免Pt表面的快速氧化,实现高的OER性能,我们将Pt金属纳米粒子有效地限域在超薄功能多孔碳层内....  相似文献   

5.
Ce是一种用途十分广泛的稀土金属,其丰度也是稀土元素中最高的。其金属氧化物CeO2由于具有优异的储放氧性能,其晶格中存在的大量氧空位可以直接作为活性位点,能够捕捉气相中的O2,产生大量的活性氧物种,表现出良好的催化性能,在各催化体系中作为载体和活性组分被普遍使用。分别从CeO2独特的氧空位性质,CeO2氧空位的形成途径,氧空位的表征技术以及氧空位在催化反应中的作用等方面的最新研究进展进行了综述。最后对CeO2氧空位在氧化还原、有机物污染降解等反应过程中的应用进行了总结和展望。  相似文献   

6.
过渡金属氧化物是一种具有高效催化活性的电解水析氧反应催化剂,但低电子电导率限制了其催化活性,将活性纳米材料与导电基质材料复合,是构筑高性能电极材料或电化学催化剂的有效途径。采用溶剂热法制备了负载在C3N4上的聚合卟啉,经Co元素修饰和热处理后得到Co3O4/NC催化剂,采用XRD、SEM、TEM、XPS和FT-IR等方法对催化剂的物理化学性质进行表征。结果表明,Co3O4/NC-600具有超小纳米Co3O4结构,且其含氮量高,吡啶N与Co之间产生了协同作用,催化剂在OER反应中表现出良好的催化性能,其Tafel斜率仅为66.4 mV/dec,达到10 mA/cm2的电流密度所需的过电势为343.3 mV。  相似文献   

7.
利用太阳能在温和条件下实现CO2还原反应,不仅可以缓解过度消耗化石能源造成的能源危机,还可以改善诸如温室效应和海洋酸化等环境问题.光热协同催化可以有效降低催化反应温度,具有较大的应用前景.本文利用Ru与暴露TiO2{001}晶面的TiO2载体产生的金属-载体相互作用,经过高温氢气煅烧后,获得具有丰富表面氧空位的Ru/TiO2催化剂.活性测试结果表明,具有丰富表面氧空位的Ru/TiO2表现出优异的CO2甲烷化活性,反应过程中甲烷的TOF值在300°C时可以达到22 h-1,但该催化剂却表现出较差的稳定性,在反应10小时后,甲烷的TOF值逐渐降低到19 h-1.将紫外光引入到Ru/TiO2热催化甲烷化体系中,甲烷的TOF值增加到30 h-1,且兼具高稳定性.热催化反应过程中逐渐消失的表面氧空位和部分氧化的Ru是活性降低的主要原因.在光热协同反应中,光生电子的产生稳定了Ru表面的电子密度,同时也再生了催化剂上表面氧空位,这有效地提高了反应的活性和稳定性.程序升温原位红外和X射线光电子能谱实验结果表明,当催化剂表面具有丰富的表面氧空位时,CO2可以有效地在Ru纳米粒子上解离成CO中间体,随后吸附在Ru上的CO中间体解离成表面碳物种,并加氢产生甲烷.在热催化反应过程中,Ru纳米粒子逐渐被氧化成Ru Ox物种,且表面氧空位被CO中间物种覆盖,降低了催化反应的稳定性.当紫外光引入到上述反应中,催化剂的表面氧空位可有效提高光生载流子的分离能力.TiO2载体产生的光电子转移至Ru表面,稳定了金属Ru纳米粒子的价态.另外,载体产生的光生空穴加速了H2质子化,提高了催化剂对氢气的活化迁移能力,促进了CO中间体的加氢甲烷化反应,进而再生表面氧空位.因此在紫外光照下,兼顾提高了热催化CO2甲烷化的活性和稳定性.值得注意的是,当Ru负载于暴露少量TiO2{001}晶面的TiO2载体上时,产生了强金属-载体相互作用并抑制了H2在催化剂上的吸附活化,不利于产生表面氧空位.因此暴露少量TiO2{001}晶面的Ru/TiO2催化剂也不利于光生载流的产生和分离,这导致热催化或光热协同催化反应活性较低.  相似文献   

8.
非贵金属铁镍合金催化剂在析氧反应(OER)中性能优异,表现出取代贵金属RuO2催化剂的巨大潜力.以SiO2为大孔模板,多巴胺为氮碳源,Fe3+,Ni2+为金属源,通过原位吸附、聚合、焙烧、刻蚀等步骤制备得到铁镍合金纳米颗粒镶嵌的多级孔氮掺杂碳催化剂.碱性介质中的析氧反应测试表明,合金催化剂达到电流密度10 mA·cm-2时过电位仅为286 mV,显著低于以RuO2为催化剂的380 mV过电位;同时经过2000圈循环伏安老化后活性几乎无衰减,稳定性高.所制备的合金催化剂具有两方面结构优势:(1)铁镍合金以及单质铁纳米颗粒镶嵌于大孔碳的薄层孔壁中,有利于暴露活性位点;(2)石墨化氮碳层对合金纳米颗粒的保护提高了材料抗腐蚀性,进而提升其稳定性.  相似文献   

9.
尖晶石钴矿(例如ACo2O4,其中A=Mn, Fe, Co, Ni, Cu或Zn的阳离子取代)是一种精确调控其电子结构/性质,并因此改善相应的电催化水分解析氧(OER)性能的有前途的策略.然而,有关它的基本原理和机制尚未完全理解.为了确定尖晶石氧化物在OER中的作用,已有实验和理论报道.例如, Prabu发现Ni3+离子取代Ni Co2O4的八面体位点可以显着提高OER性能;Hutchings报道OER性能提高源自Co3O4八面体Co3+的活性位;Wei研究发现Mn Co2O4八面体位置的Mn3+离子是OER的活性位点.尽管多数研究没有对此给出清晰的解释,但这些研究清楚地表明,尖晶石氧化物对OER的电催化性能在很大程度上取决于过渡金属阳离子(A)的化合价态及其在尖晶石结构中的相应位点分布.本文旨在合成具有同种形貌的尖晶石ACo2  相似文献   

10.
金属-空气电池因其高效率和便携性受到广泛关注.然而,氧还原反应(ORR)的高能垒和缓慢的动力学导致其输出功率低.尽管贵金属铂基材料具有较高的ORR活性,但其在工业上的大规模应用受到高成本的制约.因此,迫切需要以储量丰富的非贵金属为原料,开发具有低成本、高性能和耐用性的催化剂.近年来,单原子过渡金属与氮共掺杂碳材料(M-N-C)成为替代贵金属催化剂的理想材料.理论模拟和实验结果均表明,单原子Fe/Co-N-C催化剂具有良好的ORR活性,其中FeN4和CoN4构型被认为是主要活性位点.此外,含有相邻金属位点的双金属单原子催化剂具有加速ORR动力学的巨大潜力.通过对ORR中间体的桥式-顺式吸附,双金属位点可以促进O-O键的裂解,从而提高催化活性.除固有活性外,双金属位点可减少ORR过程中含氧中间体对M-N键的攻击,提高M-N-C对ORR的耐久性和工业应用潜力.因此,近年来,研究者开始探索双金属单原子催化剂的合成和电催化性能,发现Fe-Co, Fe-Mn, Fe-Cu, Co-Zn和Co-Pt双位点可以有效催化ORR.为进一步提高ORR活性,需要合理...  相似文献   

11.
将超临界法制备的钛副族纳米金属氧化物(TiO2、ZrO2、HfO2)分别与ZSM-5分子筛和石英砂混合得到双功能催化剂(Ti/HZ、Zr/HZ、Hf/HZ)和金属氧化物催化剂(Ti/Si、Zr/Si、Hf/Si)。研究了金属氧化物的晶体结构、表面氧空位和合成气吸附性能对金属氧化物催化剂和双功能催化剂催化CO加氢性能的影响。结果表明,双功能催化剂可以直接催化合成气制芳烃。金属氧化物表面氧空位浓度、氧空位电子性质和金属氧化物的H/C比(CO和H2吸附量之比)共同决定着金属氧化物表面中间体产物的种类。ZrO2表面的碳氢氧(CHxO*)中间体产物有利于Zr/HZ获得芳烃高选择性(71.15%),而TiO2和HfO2中的CH3*则导致Ti/HZ和Hf/HZ的催化产物CH4选择性较高。  相似文献   

12.
以电催化为核心的新能源储存和转换技术为缓解能源与环境问题提供了有效手段.可充电锌空气电池因其理论能量密度(1086 Wh·kg–1)高、成本效益显著、安全系数高、环境友好及放电平稳等优点被认为是一种具有前景的能源存储/转换装置,有望在新能源汽车、便携式电源等领域广泛应用.氧还原反应(ORR)和氧析出反应(OER)是锌-空气电池中的核心反应,目前,虽然贵金属催化剂对上述反应表现出一定的电催化活性,但由于其稀缺性、高昂价格和低稳定性因素严重阻碍了它们在锌-空气电池中的广泛应用.而非贵金属催化剂所面临的瓶颈在于ORR/OER反应动力学缓慢,导致其在实际应用过程中存在电压效率低和催化剂腐蚀等问题.因此,为了推进锌-空气电池商业化进程,研制低成本、高效、稳定的非贵金属催化剂迫在眉睫.本文通过一步法将双金属前驱体嵌入氮掺杂有序介孔碳(NOMC)中,合成了具有尖晶石型铁钴氧化物的高性能非贵金属电催化剂(FexCo/NOMC,x代表铁钴的摩尔比).实验结果表明,在x=0.5时,所制备的催化剂具有最佳的催化活性,与商业贵金属催化剂相比,该催化剂展现更优的电催化活性和稳定性.电化学测试结果表明,其ORR的半波电位为0.89 V(vs.RHE),当OER电流密度为10 mA·cm–1时,过电势仅为0.31 V,且电流-时间曲线测试结果表明催化剂表现出较好的稳定性.通过X射线光电子能谱(XPS)、穆斯堡尔谱(M?ssbauer)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和拉曼光谱(Raman)等表征手段对电催化剂的物化性质进行表征,结果表明该材料优异的氧电催化性能归因于双金属氧化物的电子调控作用、NOMC的介孔结构、高导电性和高比表面积,其ORR与OER的催化活性位点分别是氮活化的碳(N-C)和双金属氧化物.以优化的Fe0.5Co/NOMC为正极组装可充电锌-空气电池,该电池在空气环境下展现出优良的充放电性能,其在电流密度为100 mA·cm–2条件下操作时能量密度达到820 Wh·kg–1,在1.0 V时功率密度达到153 mW·cm–2,它还表现出较好的稳定性,经过144 h的循环实验,活性没有明显下降.本文不仅制备了一种有前景的尖晶石型氧化物碳基氧电催化材料,还为高效氧电催化剂的合理开发与构筑提供了一条新的思路.  相似文献   

13.
开发用于析氧反应(OER)的高性能非贵金属催化剂有望提高电解水制氢的效率,促进氢能的开发利用。本研究采用简便的一步溶剂热法在泡沫镍(NF)上原位生长NiC2O4-Co(草酸镍钴)双金属电催化剂,可应用于高效的析氧反应。在1 mol/L KOH溶液中,自支撑NiC2O4-Co1双金属催化剂在10 mA/cm2下的析氧过电位仅为278 mV,塔菲尔斜率为65 mV/dec,并显现出优异稳定的OER性能。NiC2O4-Co双金属催化剂优异的性能归因于优化的电子结构,增大的比表面积,快速的界面电荷转移能力,以及OER过程中Ni位点和Co位点之间的协同效应。  相似文献   

14.
在众多非贵金属基材料中,金属有机骨架(MOFs)因其高比表面积和丰富的金属活性中心而成为最有前景的氧气析出反应(OER)催化剂之一.但MOFs的本征催化活性、导电性和稳定性较差,从而影响其在OER电催化中的应用.本工作通过电沉积法在泡沫镍支撑的FeNi MOF纳米片表面引入5 nm的CeO2纳米团簇来提高MOFs的催化活性.CeO2纳米团簇与FeNi MOF纳米片之间的固-固界面相互作用以及CeO2纳米团簇的掺杂有效调控了MOF表面金属位点的电子结构,提高了金属位点的本征电催化活性;同时,CeO2团簇良好的导电性促进了FeNi MOF表面的电荷迁移,从而使CeO2/FeNi MOF的OER活性优于FeNi MOF.在1 mol·L-1 KOH溶液中CeO2/FeNi MOF达到50 mA·cm-2和100 mA·cm-2的电流密度所需要的过电位分别只有220 mV和233 mV,同时表现出快速的反应动力学和优异的稳定性.  相似文献   

15.
氧还原反应是燃料电池的核心,开发高性能催化剂一直是燃料电池技术面临的严峻挑战. 近年来,热解M-N-C催化剂的发展和以金属有机骨架材料为前驱体的运用让非贵金属氧还原催化剂的性能大幅度提升,但催化活性位点、反应机理等方面仍不甚清晰,需要分子水平上进一步的研究. 在这里,作者总结了本课题组近些年来在氧还原方向上的研究成果,首先是对催化剂活性位点进行的相关探索,提出了新的活性位点结构,为开发新型催化剂提供了帮助,并对金属氮碳催化剂进行了细致的微观调控,探讨了最佳的合成方法;其次开发了高效的双原子Co2N5催化剂,并在理论计算的指导下合成出了更为高效的FeCo双原子催化剂,具备了替代铂基催化剂的性能;最后针对芬顿反应引发的稳定性问题而开发的低芬顿反应活性的单原子Cr和单原子Ru催化剂,表现出了较高的活性和稳定性,为解决催化剂实际应用问题开辟了新的研究思路与方向. 作者相信,通过对催化剂活性位点的不断认知和对新型催化剂的不断开发,终会让非贵金属催化的商业化应用成为现实.  相似文献   

16.
电催化水分解产氢是从根本上解决当前能源及环境等难题的最理想途径.然而,由于析氧反应(OER)是一个涉及多质子耦合电子转移的复杂过程,其动力学缓慢限制了水分解的效率,成为光电水分解的速控步骤,是相关应用发展的一大瓶颈,受到学术界与工业界的广泛关注.如何设计制备出性能高效、稳定性突出、价廉环保的水氧化催化剂,并揭示构-效关系及深入理解其催化机制成为该领域的重要课题.IrO2和RuO2等贵金属化合物被公认为当前最好的电催化析氧催化剂,但高成本及稀缺性严重限制了它们大规模应用.为此,开发高效低成本廉价过渡金属OER催化剂成为能源催化学科的研究热点与重点.在已报道的过渡金属催化剂中,原位电沉积制备的磷酸钴(Co-Pi)被认为是迄今为止最有效的OER催化剂之一.尽管Co-Pi展现出诱人的性能,但无序的非晶态结构限制了对其结构进行精确描述,至今它的详细结构尚没有定论.由于其在结构方面的局限性,影响了进一步揭示水氧化催化剂构-效关系及深入理解水氧化机理.作为引入磷酸基构筑的晶态金属有机骨架材料,其柔性的多阴离子官能团可能带来更多可调控的结构因素,其丰富的可调...  相似文献   

17.
与助催化剂形成异质结,通过调整活性位点的电子结构和电荷输运来提高Ni2P的电催化活性是一种可行的方法。本文成功构建了一种高效的Cu3P/Ni2P异质结催化剂,其中Cu3P本身仅作为助催化剂,通过调节Ni2P的电子转移和表面重构来提高电催化活性。结果表明,在10 mA·cm-2的电流密度下,Cu3P/Ni2P具有优异的析氧反应(OER)活性,过电位为213 mV。结合实验结果和理论计算可知,Cu3P助催化剂可以有效调整Ni中心的电子结构,实现电荷重分布,降低反应能垒,从而显著提高OER催化活性。此外,Cu3P助催化剂诱导的丰富的晶界和晶格畸变促进了表面重构,形成Ni5O(OH)9,为OER提供了有效的活性位点。本工作通过引入助催化剂构建了一种新型异质结电催化剂,为优化过渡金属磷化物的电催化性能提供了一条有效途径。  相似文献   

18.
本研究将单原子分散的Fe-N4位点锚定在氮掺杂空心多孔碳球上用于电催化氧还原反应,研究表明,所制备的FeSAs/HNCSs-800催化剂表现出优异的电催化氧还原性能,其起始电位为0.925 V,半波电位为0.867 V。球差电镜和同步辐射X射线吸收光谱证实了催化剂中存在高度分散的Fe-N4单原子位点。通过密度泛函理论计算证明单原子Fe-N4位点是氧还原反应有效的活性位点,其相邻的C缺陷可以有效调控单原子Fe的电子结构,进而提高电催化氧还原性能。  相似文献   

19.
李家欣  冯立纲 《电化学》2022,28(9):2214001
析氧反应(OER)是水分解中重要的半反应, 为提高其催化性能,开发高效非贵金属催化剂已成为当前的研究重点。铁镍(FeNi)基材料被认为是最好的预催化剂, 在催化过程中,它们的表面将转变成高价态金属氧化物或氢氧化物作为真正的活性物质。FeNi基预催化剂的结构和形貌在很大程度上影响了其催化性能, 因此, 优化和调整FeNi基预催化剂的结构和化学环境可以提高电催化性能。基于我们的研究工作, 我们撰写了FeNi基预催化剂的表面结构调控促进电化学析氧反应的研究进展。我们首先介绍了碱性OER的反应机理, 然后从杂原子掺杂、表面成分改性、选择性结构转变、表面化学状态调节、异质结构构建和载体效应等方面讨论了FeNi基预催化剂表面调控对析氧反应性能的影响。尽管在OER反应中FeNi都被认为转变成高价态的金属活性物质, Fe/Ni体系的表面结构、形貌和化学状态仍然能够显著影响其最终的催化性能, 即FeNi基预催化剂的性质会影响析氧反应的催化性能。通过精细设计并尽量提高Fe和Ni的协同作用将有利用提升氧析出的催化性能。我们希望本综述能够对FeNi基预催化剂的制备和表界面性质调控与电催化析氧反应性能的理解有所帮助。  相似文献   

20.
氢能作为一种潜在的能源载体,有望取代化石燃料,解决当今社会的能源需求和环境问题.质子交换膜电解水(PEMWE)技术因其工作电流密度大、氢气纯度高和系统响应迅速等优点,能够有效地弥补可再生能源波动性等缺点,被认为是一种利用可再生能源制氢的可持续手段.但其阳极氧析出反应(OER)为四电子/质子转移过程,反应动力学缓慢,同时强氧化性和强酸性环境会对阳极催化剂的产生腐蚀,导致稳定性差,因此亟需开发高效且稳定的催化剂.研究发现,无定型氧化铱材料中的特殊缺陷结构可显著提升其催化酸性OER的活性,但该结构也会加速反应过程中铱的溶解,导致催化剂稳定性降低,严重限制了其实际应用.本文采用高价金属掺杂的策略,利用高价金属元素与氧的强成键作用,对无定型氧化铱的整体结构及活性位点起到优化且稳定的作用.首先,采用改性的亚当斯熔融法制备了金属钽掺杂的无定型氧化铱:350-Ta@IrOx,400-Ta@IrOx,450-Ta@IrOx(350,400和450代表样品分别在350,400和450℃烧结),并用于催化酸性OER;作为对比,制备了无掺杂的无定型氧化铱:350-I...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号