首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new spirostanol sapogenins (5β-spirost-25(27)-en-1β,2β,3β,5β-tetrol 3 and its 25,27-dihydro derivative, (25S)-spirostan-1β,2β,3β,5β-tetrol 4) and four new saponins were isolated from the roots and rhizomes of Convallaria majalis L. together with known sapogenins (isolated from Liliaceae): 5β-spirost-25(27)-en-1β,3β-diol 1, (25S)-spirostan-1β,3β-diol 2, 5β-spirost-25(27)-en-1β,3β,4β,5β-tetrol 5, (25S)-spirostan-1β,3β,4β,5β-tetrol 6, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 7 and (25S)-spirostan-1β,2β,3β,4β,5β-pentol 8. New steroidal saponins were found to be pentahydroxy 5-O-glycosides; 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-galactopyranoside 9, 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-β-arabinonoside 11, 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-galactoside 10 and 5β-(25S)-spirostan-1β,2β,3β,4β,5β-pentol 5-O-arabinoside 12 were isolated for the first time. The structures of those compounds were determined by NMR spectroscopy, including 2D COSY, HMBC, HSQC, NOESY, ROESY experiments, theoretical calculations of shielding constants by GIAO DFT, and mass spectrometry (FAB/LSI HR MS). An attempt was made to test biological activity, particularly as potential chemotherapeutic agents, using in silico methods. A set of 12 compounds was docked to the PDB structures of HER2 receptor and tubulin. The results indicated that diols have a higher affinity to the analyzed targets than tetrols and pentols. Two compounds (25S)-spirosten-1β,3β-diol 1 and 5β-spirost-25(27)-en-1β,2β,3β,4β,5β-pentol 5-O-galactoside 9 were selected for further evaluation of biological activity.  相似文献   

2.
The effects of nanoparticles (NPs) on microbiota homeostasis and their physiological relevance are still unclear. Herein, we compared the modulation and consequent pharmacological effects of oral administration of (−)-epigallocatechin-3-gallate (EGCG)-loaded β-cyclodextrin (β-CD) NPs (EGCG@β-CD NPs) and EGCG on gut microbiota. EGCG@β-CD NPs were prepared using self-assembly and their influence on the intestinal microbiome structure was analyzed using a metagenomics approach. The “Encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential” of EGCG@β-CD NPs were recorded as 98.27 ± 0.36%, 124.6 nm, 0.313 and –24.3 mV, respectively. Surface morphology of EGCG@β-CD NPs was observed as spherical. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and molecular docking studies confirmed that EGCG could be well encapsulated in β-CD and formed as EGCG@β-CD NPs. After being continuously administered EGCG@β-CD NPs for 8 weeks, the serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and liver malondialdehyde (MDA) levels in the rats were significantly decreased, while the levels of catalase (CAT) and apolipoprotein-A1 (apo-A1) in the liver increased significantly in the hyperlipidemia model of rats, when compared to the high-fat-diet group. Furthermore, metagenomic analysis revealed that the ratio of Verrucomicrobia/Bacteroidetes was altered and Bacteroidetes decreased in the high-fat diet +200 mg/kg·bw EGCG@β-CD NPs group, while the abundance of Verrucomicrobia was significantly increased, especially Akkermansia muciniphila in rat feces. EGCG@β-CD NPs could be a promising EGCG delivery strategy to modulate the gut microbiota, enhancing its employment in the prevention of hyperlipidemia.  相似文献   

3.
α-synuclein (α-syn) is a major culprit of Parkinson’s disease (PD), although lipoprotein metabolism is very important in the pathogenesis of PD. α-syn was expressed and purified using the pET30a expression vector from an E. coli expression system to elucidate the physiological effects of α-syn on lipoprotein metabolism. The human α-syn protein (140 amino acids) with His-tag (8 amino acids) was expressed and purified to at least 95% purity. Isoelectric focusing gel electrophoresis showed that the isoelectric point (pI) of α-syn and apoA-I were pI = 4.5 and pI = 6.4, respectively. The lipid-free α-syn showed almost no phospholipid-binding ability, while apoA-I showed rapid binding ability with a half-time (T1/2) = 8 ± 0.7 min. The α-syn and apoA-I could be incorporated into the reconstituted HDL (rHDL, molar ratio 95:5:1:1, palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I:α-syn with the production of larger particles (92 Å) than apoA-I-rHDL (86 and 78 Å) and α-syn-rHDL (65 Å). An rHDL containing both apoA-I and α-syn showed lower α-helicity around 45% with a red shift of the Trp wavelength maximum fluorescence (WMF) from 339 nm, while apoA-I-HDL showed 76% α-helicity and 337 nm of WMF. The denaturation by urea addition showed that the incorporation of α-syn in rHDL caused a larger increase in the WMF than apoA-I-rHDL, suggesting that the destabilization of the secondary structure of apoA-I by the addition of α-syn. On the other hand, the addition of α-syn induced two-times higher resistance to rHDL glycation at apoA-I:α-syn molar ratios of 1:1 and 1:2. Interestingly, low α-syn in rHDL concentrations, molar ratio of 1:0.5 (apoA-I:α-syn), did not prevent glycation with more multimerization of apoA-I. In the lipid-free and lipid-bound state, α-syn showed more potent antioxidant activity than apoA-I against cupric ion-mediated LDL oxidation. On the other hand, microinjection of α-syn (final 2 μM) resulted in 10% less survival of zebrafish embryos than apoA-I. A subcutaneous injection of α-syn (final 34 μM) resulted in less tail fin regeneration than apoA-I. Interestingly, incorporation of α-syn at a low molar ratio (apoA-I:α-syn, 1:0.5) in rHDL resulted destabilization of the secondary structure and impairment of apoA-I functionality via more oxidation and glycation. However, at a higher molar ratio of α-syn in rHDL (apoA-I:α-syn = 1:1 or 1:2) exhibited potent antioxidant and anti-glycation activity without aggregation. In conclusion, there might be a critical concentration of α-syn and apoA-I in HDL-like complex to prevent the aggregation of apoA-I via structural and functional enhancement.  相似文献   

4.
Centaurothamnus maximus (family Asteraceae), is a leafy shrub indigenous to the southwestern Arabian Peninsula. With a paucity of phytochemical data on this species, we set out to chemically characterize the plant. From the aerial parts, two newly identified guaianolides were isolated: 3β-hydroxy-4α(acetoxy)-4β(hydroxymethyl)-8α-(4-hydroxy methacrylate)-1αH,5αH, 6αH-gual-10(14),11(13)-dien-6,12-olide (1) and 15-descarboxy picrolide A (2). Seven previously reported compounds were also isolated: 3β, 4α, 8α-trihydroxy-4-(hydroxymethyl)-lαH, 5αH, 6βH, 7αH-guai-10(14),11(13)-dien-6,12-olide (3), chlorohyssopifolin B (4), cynaropikrin (5), hydroxyjanerin (6), chlorojanerin (7), isorhamnetin (8), and quercetagetin-3,6-dimethyl ether-4’-O-β-d-pyranoglucoside (9). Chemical structures were elucidated using spectroscopic techniques, including High Resolution Fast Atom Bombardment Mass Spectrometry (HR-FAB-MS), 1D NMR; 1H, 13C NMR, Distortionless Enhancement by Polarization Transfer (DEPT), and 2D NMR (1H-1H COSY, HMQC, HMBC) analyses. In addition, a biosynthetic pathway for compounds 1–9 is proposed. The chemotaxonomic significance of the reported sesquiterpenoids and flavonoids considering reports from other Centaurea species is examined.  相似文献   

5.
Maesa membranacea A. DC. (Primulaceae) is a plant species that has been frequently used by practitioners of the traditional ethnobotany knowledge from northern and central Vietnam. However, the chemical constituents of the plant remained unknown until recently. Chromatographic separation of a chloroform-soluble fraction of extract from leaves of M. membranacea led to the isolation of two new polyesterified ursane triterpenes (1–2) and two known apocarotenoids: (+)-dehydrovomifoliol (3) and (+)-vomifoliol (4). The chemical structures of the undescribed triterpenoids were elucidated using 1D and 2D MNR and HRESIMS spectral data as 2α,6β,22α-triacetoxy-11α-(2-methylbutyryloxy)-urs-12-ene-3α,20β-diol (1) and 2α,6β,22α-triacetoxy-urs-12-ene-3α,11α,20β-triol (2). The newly isolated triterpenoids were tested for their cytotoxic activity in vitro against two melanoma cell lines (HTB140 and A375), normal skin keratinocytes (HaCaT), two colon cancer cell lines (HT29 and Caco-2), two prostate cancer cell lines (DU145 and PC3) and normal prostate epithelial cells (PNT-2). Doxorubicin was used as a reference cytostatic drug. The 2α,6β,22α-triacetoxy-11α-(2-methylbutyryloxy)-urs-12-ene-3α,20β-diol demonstrated cytotoxic activity against prostate cancer cell lines (Du145—IC50 = 35.8 µg/mL, PC3—IC50 = 41.6 µg/mL), and at a concentration of 100 µg/mL reduced viability of normal prostate epithelium (PNT-2) cells by 41%.  相似文献   

6.
7.
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.  相似文献   

8.
Hericium erinaceus, a culinary and medicinal mushroom, is widely consumed in Asian countries. Chemical investigation on the fruiting bodies of Hericium erinaceus led to the isolation of one new ergostane-type sterol fatty acid ester, erinarol K (1); and eleven known compounds: 5α,8α -epidioxyergosta-6,22-dien-3β-yl linoleate (2); ethyl linoleate (3); linoleic acid (4); hericene A (5); hericene D (6); hericene E (7); ergosta-4,6,8(14),22-tetraen-3-one (8); hericenone F (9); ergosterol (10); ergosterol peroxide (11); 3β,5α,6α,22E-ergosta-7,22-diene-3,5,6-triol 6-oleate (12). The chemical structures of the compounds were determined by 1D and 2D NMR (nuclear magnetic resonance) spectroscopy, mass spectra, etc. Anti-inflammatory effects of the isolated aromatic compounds (5–7, 9) were evaluated in terms of inhibition of pro-inflammatory mediator (TNF-α, IL-6 and NO) production in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. The results showed that compounds 5 and 9 exhibited moderate activity against TNF-α (IC50: 78.50 μM and 62.46 μM), IL-6 (IC50: 56.33 μM and 48.50 μM) and NO (IC50: 87.31 μM and 76.16 μM) secretion. These results supply new information about the secondary metabolites of Hericium erinaceus and their anti-inflammatory effects.  相似文献   

9.
In the present work, a novel heterocyclic hybrid of a spirooxindole system was synthesized via the attachment of ferrocene and triazole motifs into an azomethine ylide by [3 + 2] cycloaddition reaction protocol. The X-ray structure of the heterocyclic hybrid (1″R,2″S,3R)-2″-(1-(3-chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-methyl-1″-(ferrocin-2-yl)-1″,2″,5″,6″,7″,7a″-hexahydrospiro[indoline-3,3″-pyrrolizin]-2-one revealed very well the expected structure, by using different analytical tools (FTIR and NMR spectroscopy). It crystallized in the triclinic-crystal system and the P-1-space group. The unit cell parameters are a = 9.1442(2) Å, b = 12.0872(3) Å, c = 14.1223(4) Å, α = 102.1700(10)°, β = 97.4190(10)°, γ = 99.1600(10)°, and V = 1484.81(7) Å3. There are two molecules per unit cell and one formula unit per asymmetric unit. Hirshfeld analysis was used to study the molecular packing of the heterocyclic hybrid. H···H (50.8%), H···C (14.2%), Cl···H (8.9%), O···H (7.3%), and N···H (5.1%) are the most dominant intermolecular contacts in the crystal structure. O···H, N···H, H···C, F···H, F···C, and O···O are the only contacts that have the characteristic features of short and significant interactions. AIM study indicated predominant covalent characters for the Fe–C interactions. Also, the electron density (ρ(r)) at the bond critical point correlated inversely with the Fe–C distances.  相似文献   

10.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

11.
12.
As part of our continuous studies involving the prospection of natural products from Brazilian flora aiming at the discovery of prototypes for the development of new antiparasitic drugs, the present study describes the isolation of two natural acetylene acetogenins, (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11′-yn-19′-enyl)butanolide (1) and (2S,3R,4R)-3-hydroxy-4-methyl-2-(n-eicos-11′-ynyl)butanolide (2), from the seeds of Porcelia macrocarpa (Warm.) R.E. Fries (Annonaceae). Using an ex-vivo assay, compound 1 showed an IC50 value of 29.9 μM against the intracellular amastigote forms of Leishmania (L.) infantum, whereas compound 2 was inactive. These results suggested that the terminal double bond plays an important role in the activity. This effect was also observed for the semisynthetic acetylated (1a and 2a) and eliminated (1b and 2b) derivatives, since only compounds containing a double bond at C-19 displayed activity, resulting in IC50 values of 43.3 μM (1a) and 23.1 μM (1b). In order to evaluate the effect of the triple bond in the antileishmanial potential, the mixture of compounds 1 + 2 was subjected to catalytic hydrogenation to afford a compound 3 containing a saturated side chain. The antiparasitic assays performed with compound 3, acetylated (3a), and eliminated (3b) derivatives confirmed the lack of activity. Furthermore, an in-silico study using the SwissADME online platform was performed to bioactive compounds 1, 1a, and 1b in order to investigate their physicochemical parameters, pharmacokinetics, and drug-likeness. Despite the reduced effect against amastigote forms of the parasite to the purified compounds, different mixtures of compounds 1 + 2, 1a + 2a, and 1b + 2b were prepared and exhibited IC50 values ranging from 7.9 to 38.4 μM, with no toxicity for NCTC mammalian cells (CC50 > 200 μM). Selectivity indexes to these mixtures ranged from >5.2 to >25.3. The obtained results indicate that seeds of Porcelia macrocarpa are a promising source of interesting prototypes for further modifications aiming at the discovery of new antileishmanial drugs.  相似文献   

13.
The results of an investigation of the protective effects of five lanostane triterpenoids: 3β-acetoxy-7β,8β-epoxy-5α-lanost-24-en-30,9α-olide (1), 3β-hydroxy-7β,8β-epoxy-5α-lanost-24-en- 30,9α-olide (2), 29-nor-penasterone (3), penasterone (4), and acetylpenasterol (5), from a marine sponge, Penares sp., against paraquat-induced neuroblastoma Neuro-2a cell damage, are described. The influence of all compounds on viability of the Neuro-2a cells treated with paraquat (PQ) was studied with MTT and fluorescein diacetate assays as well as propidium iodide straining. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of the compounds as well as their influence on reactive oxygen species (ROS) level and mitochondrial membrane potential in PQ-treated neuronal cells were analyzed. Finally, the effect of the compounds on intracellular level of heat shock protein 70 kDa (Hsp70) and neurite outgrowth in PQ-treated Neuro-2a cells were studied. Studied triterpenoids demonstrated protective effects against PQ-induced neurotoxicity associated with the ability to reduce ROS intracellular level and diminish mitochondrial dysfunction. Acetylpenasterol (5), as a more promising neuroprotective compound, significantly increased the viability of Neuro-2a cells incubated with PQ as well as decreased intracellular ROS level in these cells. Moreover, acetylpenasterol induced Hsp70 expression in PQ-treated cells. It was also shown to inhibit PQ-induced neurite loss and recovered the number of neurite-bearing cells. The relationship between neuroprotective activity of the investigated compounds 1–5 and their chemical structure was also discussed.  相似文献   

14.
Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-β-d-allopyranosyl-5β,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-β-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2–6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0–76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.  相似文献   

15.
A 1,4,7,10-tetraazacyclododecane (cyclen) variant bearing two thiosemicarbazone pendant groups has been prepared. The ligand forms complexes with Mn2+, Co2+ and Zn2+. X-ray crystallography of the Mn2+, Co2+ and Zn2+ complexes showed that the ligand provides a six-coordinate environment for the metal ions. The Mn2+ and Zn2+ complexes exist in the solid state as racemic mixtures of the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,λ)/Λ(δ,δ,δ,δ) diastereomers, and the Co2+ complex exists as the Δ(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and Δ(λ,λ,λ,δ)/Λ(δ,δ,δ,λ) diastereomers. Density functional theory calculations indicated that the relative energies of the diastereomers are within 10 kJ mol−1. Magnetic susceptibility of the complexes indicated that both the Mn2+ and Co2+ ions are high spin. The ligand was radiolabelled with gallium-68, in the interest of developing new positron emission tomography imaging agents, which produced a single species in high radiochemical purity (>95%) at 90 °C for 10 min.  相似文献   

16.
This study aimed to investigate the chemical composition of the leaf essential oil from Ivoirian Isolona dewevrei. A combination of chromatographic and spectroscopic techniques (GC(RI), GC-MS and 13C-NMR) was used to analyze two oil samples (S1 and S2). Detailed analysis by repetitive column chromatography (CC) of essential oil sample S2 was performed, leading to the isolation of four compounds. Their structures were elucidated by QTOF-MS, 1D and 2D-NMR as (10βH)-1β,8β-oxido-cadin-4-ene (38), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (cis-germacrene D-8-ol) (52), 4-methylene-(7αH)-germacra-1(10),5-dien-8α-ol (trans-germacrene D-8-ol) (53) and cadina-1(10),4-dien-8β-ol (56). Compounds 38, 52 and 53 are new, whereas NMR data of 56 are reported for the first time. Lastly, 57 constituents accounting for 95.5% (S1) and 97.1% (S2) of the whole compositions were identified. Samples S1 and S2 were dominated by germacrene D (23.6 and 20.5%, respectively), followed by germacrene D-8-one (8.9 and 8.7%), (10βH)-1β,8β-oxido-cadin-4-ene (7.3 and 8.7), 4-methylene-(7αH)-germacra-1(10),5-dien-8β-ol (7.8 and 7.4%) and cadina-1(10),4-dien-8β-ol (7.6 and 7.2%). Leaves from I. dewevrei produced sesquiterpene-rich essential oil with an original chemical composition, involving various compounds reported for the first time among the main components. Integrated analysis by GC(RI), GC-MS and 13C-NMR appeared fruitful for the knowledge of such a complex essential oil.  相似文献   

17.
The synthesis, structural, and photophysical investigations of CuI complexes with a disilanylene-bridged bispyridine ligand 1 are herein presented. Dinuclear (2) and ladder-like (3) octanuclear copper(I) complexes were straightforwardly prepared by exactly controlling the ratio of CuI/ligand 1. Single-crystal X-ray analysis confirmed that dinuclear complex 2 had no apparent π…π stacking whereas octanuclear complex 3 had π…π stacking in the crystal packing. In the solid state, the complexes display yellow-green (λem = 519 nm, Φ = 0.60, τ = 11 µs, 2) and blue (λem = 478 nm, Φ = 0.04, τ = 2.6 µs, 3) phosphorescence, respectively. The density functional theory calculations validate the differences in their optical properties. The difference in the luminescence efficiency between 2 and 3 is attributed to the presence of π…π stacking and the different luminescence processes.  相似文献   

18.
Co-crystallization of the prominent Fe(ii) spin-crossover (SCO) cation, [Fe(3-bpp)2]2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQδ radical anion has afforded a hybrid complex [Fe(3-bpp)2](TCNQ)3·5MeCN (1·5MeCN, where δ = −0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σRT = 3.1 × 10−3 S cm−1, and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ anions, [Fe(3-bpp)2](TCNQ)2·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2′-yl)pyridine (bzimpy) to obtain [Fe(bzimpy)2](TCNQ)6·2Me2CO (4) and [Fe(bzimpy)2](TCNQ)5·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σRT = 9.1 × 10−2 S cm−1 and 1.8 × 10−3 S cm−1, respectively.

Co-crystallization of the cationic complex [Fe(3-bpp)2]2+ with fractionally charged TCNQδ anions (0 < δ < 1) affords semiconducting spin-crossover (SCO) materials. The abruptness of SCO is strongly dependent on the interstitial solvent content.  相似文献   

19.
Different chromatographic methods including reversed-phase HPLC led to the isolation and purification of three O-methylated flavonoids; 5,4’-dihydroxy-3,6,7-tri-O-methyl flavone (penduletin) (1), 5,3’-dihydroxy-3,6,7,4’,5’-penta-O-methyl flavone (2), and 5-hydroxy-3,6,7,3’,4’,5’-hexa-O-methyl flavone (3) from Rhamnus disperma roots. Additionlly, four flavonoid glycosides; kampferol 7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-β-D-glucopyranoside (5), quercetin 7-O-α-L-rhamnopyranoside (6), and kampferol 3, 7-di-O-α-L-rhamnopyranoside (7) along with benzyl-O-β-D-glucopyranoside (8) were successfully isolated. Complete structure characterization of these compounds was assigned based on NMR spectroscopic data, MS analyses, and comparison with the literature. The O-methyl protons and carbons of the three O-methylated flavonoids (1–3) were unambiguously assigned based on 2D NMR data. The occurrence of compounds 1, 4, 5, and 8 in Rhamnus disperma is was reported here for the first time. Compound 3 was acetylated at 5-OH position to give 5-O-acetyl-3,6,7,3’,4’,5’-hexa-O-methyl flavone (9). Compound 1 exhibited the highest cytotoxic activity against MCF 7, A2780, and HT29 cancer cell lines with IC50 values at 2.17 µM, 0.53 µM, and 2.16 µM, respectively, and was 2–9 folds more selective against tested cancer cell lines compared to the normal human fetal lung fibroblasts (MRC5). It also doubled MCF 7 apoptotic populations and caused G1 cell cycle arrest. The acetylated compound 9 exhibited cytotoxic activity against MCF 7 and HT29 cancer cell lines with IC50 values at 2.19 µM and 3.18 µM, respectively, and was 6–8 folds more cytotoxic to tested cancer cell lines compared to the MRC5 cells.  相似文献   

20.
Coronary heart disease (CHD), which has developed into one of the major diseases, was reported to be treated by the target of peroxisome proliferators-activate receptor γ (PPAR-γ). As a natural medicine long used in the treatment of CHD, there are few studies on how to screen the target active compounds with high specific activity from Choerospondias axillaris. To advance the pace of research on target-specific active compounds in natural medicines, we have combined magnetic ligand fishing and functionalized nano-microspheres to investigate the active ingredients of PPAR-γ targets in Choerospondias axillaris. The PPAR-γ functionalized magnetic nano-microspheres have been successfully synthesized and characterized by vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The specificity, reusability, and reproducibility of the nano-microspheres were investigated with the help of the specific binding of rosiglitazone to PPAR-γ. In addition, the incubation temperature and the pH of the buffer solution in the magnetic ligand fishing were optimized to improve the specific adsorption efficiency of the analytes. Finally, with the aid of ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS/MS), the 16 active ligands including 9 organic acids, 5 flavonoids, and 2 phenols were found in the ethanolic extracts of Choerospondias axillaris. Therefore, the study can provide a successful precedent for realizing the designated extraction and rapid isolation of target-specific active ingredient groups in the complex mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号